
TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

UNIT 1 Notes

Subject: Data Structures & Program Design Year/Sem: 2nd yr./4th sem

Q1. What are the parameters & their roles considered for Analysis of an algorithm?

Explain asymptotic notations used for analysis of algorithms. 8M (W-17)

Ans: Efficiency of an algorithm can be analyzed at two different stages, before implementation

and after implementation. They are the following −

• A Priori Analysis − This is a theoretical analysis of an algorithm. Efficiency of an

algorithm is measured by assuming that all other factors, for example, processor speed,

are constant and have no effect on the implementation.

• A Posterior Analysis − This is an empirical analysis of an algorithm. The selected

algorithm is implemented using programming language. This is then executed on target

computer machine. In this analysis, actual statistics like running time and space

required, are collected.

We shall learn about a priori algorithm analysis. Algorithm analysis deals with the execution or

running time of various operations involved. The running time of an operation can be defined as

the number of computer instructions executed per operation.

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space used by the

algorithm X are the two main factors, which decide the efficiency of X.

• Time Factor − Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

• Space Factor − Space is measured by counting the maximum memory space required by

the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space required by

the algorithm in terms of n as the size of input data.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Space Complexity

Space complexity of an algorithm represents the amount of memory space required by the

algorithm in its life cycle. The space required by an algorithm is equal to the sum of the

following two components −

• A fixed part that is a space required to store certain data and variables, that are

independent of the size of the problem. For example, simple variables and constants

used, program size, etc.

• A variable part is a space required by variables, whose size depends on the size of the

problem. For example, dynamic memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is the fixed part and S(I)

is the variable part of the algorithm, which depends on instance characteristic I. Following is a

simple example that tries to explain the concept −

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

Here we have three variables A, B, and C and one constant. Hence S(P) = 1 + 3. Now, space

depends on data types of given variables and constant types and it will be multiplied

accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time required by the algorithm to run

to completion. Time requirements can be defined as a numerical function T(n), where T(n) can

be measured as the number of steps, provided each step consumes constant time.

For example, addition of two n-bit integers takes n steps. Consequently, the total computational

time is T(n) = c ∗ n, where c is the time taken for the addition of two bits. Here, we observe that

T(n) grows linearly as the input size increases.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Following are the commonly used asymptotic notations to calculate the running time

complexity of an algorithm.

• Ο Notation

• Ω Notation

• θ Notation

Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time.

It measures the worst case time complexity or the longest amount of time an algorithm can

possibly take to complete.

For example, for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n > n0. }

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time.

It measures the best case time complexity or the best amount of time an algorithm can possibly

take to complete.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

For example, for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound of an

algorithm's running time. It is represented as follows −

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. }

Common Asymptotic Notations

Following is a list of some common asymptotic notations −

constant − Ο(1)

logarithmic − Ο(log n)

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n2)

cubic − Ο(n3)

polynomial − nΟ(1)

exponential − 2Ο(n)

Q2. How to decide performance of an algorithm? Explain big O notation in brief. 5M

 (S-18,S17,W-16)

Ans: Efficiency of an algorithm can be analyzed at two different stages, before implementation

and after implementation. They are the following −

• A Priori Analysis − This is a theoretical analysis of an algorithm. Efficiency of an

algorithm is measured by assuming that all other factors, for example, processor speed,

are constant and have no effect on the implementation.

• A Posterior Analysis − This is an empirical analysis of an algorithm. The selected

algorithm is implemented using programming language. This is then executed on target

computer machine. In this analysis, actual statistics like running time and space

required, are collected.

We shall learn about a priori algorithm analysis. Algorithm analysis deals with the execution or

running time of various operations involved. The running time of an operation can be defined as

the number of computer instructions executed per operation.

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space used by the

algorithm X are the two main factors, which decide the efficiency of X.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

• Time Factor − Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

• Space Factor − Space is measured by counting the maximum memory space required by

the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space required by

the algorithm in terms of n as the size of input data.

Space Complexity

Space complexity of an algorithm represents the amount of memory space required by the

algorithm in its life cycle. The space required by an algorithm is equal to the sum of the

following two components −

• A fixed part that is a space required to store certain data and variables, that are

independent of the size of the problem. For example, simple variables and constants

used, program size, etc.

• A variable part is a space required by variables, whose size depends on the size of the

problem. For example, dynamic memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is the fixed part and S(I)

is the variable part of the algorithm, which depends on instance characteristic I. Following is a

simple example that tries to explain the concept −

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

Here we have three variables A, B, and C and one constant. Hence S(P) = 1 + 3. Now, space

depends on data types of given variables and constant types and it will be multiplied

accordingly.

Time Complexity

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Time complexity of an algorithm represents the amount of time required by the algorithm to run

to completion. Time requirements can be defined as a numerical function T(n), where T(n) can

be measured as the number of steps, provided each step consumes constant time.

For example, addition of two n-bit integers takes n steps. Consequently, the total computational

time is T(n) = c ∗ n, where c is the time taken for the addition of two bits. Here, we observe that

T(n) grows linearly as the input size increases.

Big O Notation: The Big O notation defines an upper bound of an algorithm, it bounds a

function only from above. For example, consider the case of Insertion Sort. It takes linear time in

best case and quadratic time in worst case. We can safely say that the time complexity of

Insertion sort is O(n^2). Note that O(n^2) also covers linear time.

If we use Θ notation to represent time complexity of Insertion sort, we have to use two

statements for best and worst cases:

1. The worst case time complexity of Insertion Sort is Θ(n^2).

2. The best case time complexity of Insertion Sort is Θ(n).

The Big O notation is useful when we only have upper bound on time complexity of an

algorithm. Many times we easily find an upper bound by simply looking at the algorithm.

O(g(n)) = { f(n): there exist positive constants c and

 n0 such that 0 <= f(n) <= c*g(n) for

 all n >= n0}

Q3. Explain the Stability of an Algorithm for sorting. Give an example. 4M (S-18)

Ans: A sorting algorithm is said to be stable if two objects with equal keys appear in the same

order in sorted output as they appear in the input array to be sorted.

Formally stability may be defined as,

Let be an array, and let be a strict weak ordering on the elements of A sorting algorithm is stable

if- where is the sorting permutation (sorting moves to position)

Informally, stability means that equivalent elements retain their relative positions, after sorting.

When equal elements are indistinguishable, such as with integers, or more generally, any data

where the entire element is the key, stability is not an issue. Stability is also not an issue if all

keys are different.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

An example where it is useful

Consider the following dataset of Student Names and their respective class sections.

If we sort this data according to name only, then it is highly unlikely that the resulting dataset

will be grouped according to sections as well.

Q4. Write an function to implement heap sort. 6M (S-18,W-16)

Ans: Heaps can be used in sorting an array. In max-heaps, maximum element will always be at

the root. Heap Sort uses this property of heap to sort the array.

Consider an array Arr which is to be sorted using Heap Sort.

• Initially build a max heap of elements in Arr.

• The root element, that is Arr[1], will contain maximum element of Arr. After that, swap

this element with the last element of Arr and heapify the max heap excluding the last

element which is already in its correct position and then decrease the length of heap by

one.

• Repeat the step 2, until all the elements are in their correct position

void heap_sort(int Arr[])

 {

 int heap_size = N;

 build_maxheap(Arr);

 for(int i = N; i >= 2 ; i--)

 {

 swap|(Arr[1], Arr[i]);

 heap_size = heap_size - 1;

 max_heapify(Arr, 1, heap_size);

 }

 }

Complexity Analysis of Heap Sort

Worst Case Time Complexity: O(n*log n)

Best Case Time Complexity: O(n*log n)

Average Time Complexity: O(n*log n)

Space Complexity : O(1)

• Heap sort is not a Stable sort, and requires a constant space for sorting a list.

• Heap Sort is very fast and is widely used for sorting.

Ex: Input data: 4, 10, 3, 5, 1

 4(0)

 / \

 10(1) 3(2)

 / \

 5(3) 1(4)

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

The numbers in bracket represent the indices in the array representation of data.

Applying heapify procedure to index 1:

 4(0)

 / \

 10(1) 3(2)

 / \

5(3) 1(4)

Applying heapify procedure to index 0:

 10(0)

 / \

 5(1) 3(2)

 / \

 4(3) 1(4)

The heapify procedure calls itself recursively to build heap in top down manner.

Q5. What do you mean by Divide and conquer strategy? Give suitable example for the

same. 4M (S-18,W-16)

Ans: In divide and conquer approach, the problem is divided into sub-problems and each sub-

problem is independently solved. The problems can be divided into sub-problems and sub-

problems to even smaller sub-problems, but to a stage where division is not possible. Now

the smallest possible sub-problems of the sub-problems are solved. Finally, the solution of

all the sub-problems is merged to obtain solution of original problem.

The concept of divide-and-conquer approach is explained in a three-step process.

Divide/Break

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

In this step, the problem is broken into smaller sub-problems such that each sub-part should

represent a part of the original problem. Recursive approach is used in this step to divide the

problem till further sub-division of the problem is not possible. In this approach, the

problems turn to be atomic in nature but even then represent some part of the original

problem.

Conquer/Solve
In this step, the sub-problems are solved. At this level, usually the problems are considered

'solved' on their own.

Merge/Combine
After the sub-problems being solved, this stage enables in combining the solution to

formulate a solution for the original problem. This algorithmic approach works recursively

and conquers & merge steps works so close that they appear as one.

The computer algorithms which are based on divide-and-conquer programming approach

are:

• Merge Sort

• Quick Sort

• Binary Search

• Strassen's Matrix Multiplication

• Closest pair (points)

Q6. Explain the concept of data structure in detail. Also explain abstract data type. 7M

(S-17,W-16)

Ans: Data Structure is a way of collecting and organising data in such a way that we can perform

operations on these data in an effective way. Data Structures is about rendering data

elements in terms of some relationship, for better organization and storage.

 Data Structures are structures programmed to store ordered data, so that various operations

can be performed on it easily. It represents the knowledge of data to be organized in

memory. It should be designed and implemented in such a way that it reduces the

complexity and increases the efficiency.

 Some example of Abstract Data Structure are :

• Linked List

• Tree

• Graph

• Stack, Queue etc.

 All these data structures allow us to perform different operations on data.

 Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined by a set

of value and a set of operations. The definition of ADT only mentions what operations are

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

to be performed but not how these operations will be implemented. It does not specify how

data will be organized in memory and what algorithms will be used for implementing the

operations. It is called “abstract” because it gives an implementation independent view.

 The process of providing only the essentials and hiding the details is known as abstraction.

The user of data type need not know that data type is implemented, for example, we have

been using int, float, char data types only with the knowledge with values that can take and

operations that can be performed on them without any idea of how these types are

implemented. So a user only needs to know what a data type can do but not how it will do it.

We can think of ADT as a black box which hides the inner structure and design of the data

type. Now we’ll define three ADTs namely List ADT, Stack ADT, Queue ADT.

Q7. Write a C program to sort the elements of matrix row wise Assume that the matrix is

 represented by two dimensional array. 6M (S-17,S-16)

Ans:

#include <stdio.h>

#include<conio.h>

void main()

{

 static int array1[10][10], array2[10][10];

 int i, j, k, a, m, n;

 printf("Enter the order of the matrix \n");

 scanf("%d %d", &m, &n);

 printf("Enter co-efficients of the matrix \n");

 for (i = 0; i < m; ++i)

 {

 for (j = 0; j < n; ++j)

 {

 scanf("%d", &array1[i][j]);

 array2[i][j] = array1[i][j];

 }

 }

 printf("The given matrix is \n");

 for (i = 0; i < m; ++i)

 {

 for (j = 0; j < n; ++j)

 {

 printf(" %d", array1[i][j]);

 }

 printf("\n");

 }

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

 printf("After arranging rows in ascending order\n");

 for (i = 0; i < m; ++i)

 {

 for (j = 0; j < n; ++j)

 {

 for (k =(j + 1); k < n; ++k)

 {

 if (array1[i][j] > array1[i][k])

 {

 a = array1[i][j];

 array1[i][j] = array1[i][k];

 array1[i][k] = a;

 }

 }

 }

 }

 for (i = 0; i < m; ++i)

 {

 for (j = 0; j < n; ++j)

 {

 printf(" %d", array1[i][j]);

 }

 printf("\n");

 }

 printf("After arranging the columns in descending order \n");

 for (j = 0; j < n; ++j)

 {

 for (i = 0; i < m; ++i)

 {

 for (k = i + 1; k < m; ++k)

 {

 if (array2[i][j] < array2[k][j])

 {

 a = array2[i][j];

 array2[i][j] = array2[k][j];

 array2[k][j] = a;

 }

 }

 }

 }

 for (i = 0; i < m; ++i)

 {

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

 for (j = 0; j < n; ++j)

 {

 printf(" %d", array2[i][j]);

 }

 printf("\n");

 }

}

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

