
Unit 1

What is System Programming?

System Programming consists of a variety of programs that support the operations of a

computer. This software makes it possible for the user to focus on an application or the

other problem to be solved. System programs (e.g. compiler, loader macro processors,

and operating systems) were developed to make computer better adapted d to the need of

their users.

Component of System Programming

Components of system programming are

1. Assemble

2. Loader

3. Compiler

4. Macros

5. Formal System

Assembler: -

• An assembler is a type of computer program that interprets software programs

written in assembly language into machine language, code and instructions that

can be executed by a computer.

• An assembler enables software and application developers to access, operate and

manage a computer's hardware architecture and components.

• An assembler is sometimes referred to as the compiler of assembly language. It

also provides the services of an interpreter.

Loader:-

• A loader is a program used by an operating system to load programs from a

secondary to main memory so as to be executed.

Compiler:-

A compiler is a computer program (or a set of programs) that transforms source

code written in a programming language (the source language) into another

computer language (the target language), with the latter often having a binary

form known as object code.

Macro:-

• A macro is a single line abbreviation for group of statement.

• A macro processor is a program that substitutes and specialized macro definitions

for macro calls.

Formal System:-

• A formal system consists of a language over some alphabet of symbols together

with (axioms and) inference rules that distinguish some of the strings in the

language as theorems.

• A formal system has the following components:

o A finite alphabet of symbols.

o A syntax that defines which strings of symbol are in the language of our

formal system.

o A decidable set of axioms and a finite set of rules from which the set of

theorems of the system is generated. The rules must take a finite number

of steps to apply.

----***-----

General Machine Structure

All the conventional modern computers are based upon the concept of stored program

computer, the model that was proposed by John von Neumann.

The components of a general machine are as follows:

1. Instruction interpreter: A group of electronic circuits performs the intent of

instruction of fetched from memory.

2. Location counter: LC otherwise called as program counter PC or instruction

counter IC, is a hardware memory device which denotes the location of the

current instruction being executed.

3. Instruction register: A copy of the content of the LC is stored in IR.

4. Working register: are the memory devices that serve as “scratch pad” for the

instruction interpreter.

5. General register: are used by programmers as storage locations and for special

functions.

6. Memory address registers (MAR): contains the address of the memory location

that is to read from or stored into.

7. Memory buffer register (MBR): contain a copy of the content of the memory

location whose address is stored in MAR. The primary interface between the

memory and the CPU is through memory buffer register.

8. Memory controller: is a hardware device whose work is to transfer the content

of the MBR to the core memory location whose address is stored in MAR.

9. I/O channels: may be thought of as separate computers which interpret special

instructions for inputting and outputting information from the memory.

----***-----

Assembly Language

• An assembler is a program that takes computer instruction and converts them into

a pattern of bits that the computer processor can use to perform its basic

operation.

• The assembler is responsible for translating the assembly language program into

machine code. When the source program language is essentially a symbolic

representation for a numerical machine language, the translator is called

assembler and the source language is called an assembly language.

Basic function of Assembler

• Translate mnemonics opcodes to machine language.

• Convert symbolic operands to their machine addresses.

• Build machine instructions in the proper format

• Convert data constants into machine representation.

• Error checking is provided.

• Changes can be quickly and easily incorporated with a reassembly.

• Variables are represented by symbolic names, not as memory locations.

• Assembly language statements are written one per line. A machine code program

thus consists of a sequence of assembly language statements, where each

statement contains a mnemonics.

Advantages

• Reduced errors

• Faster translation times

• Changes could be made easier and faster.

• Addresses are symbolic, not absolute \

• Easy to remember

Disadvantages

• Assembler language are unique to specific types of computer

• Program is not portable to the computer.

• Many instructions are required to achieve small tasks

• Programmer required knowledge of the processor architecture and instruction set.

Translation phase of Assembler

The six steps that should be followed by the designer

1. Specify the problem

2. Specify data structure

3. Define format of data structure

4. Specify algorithm

5. Look for modularity

6. Repeat 1 through 5 on modules

Functions / Purpose of Assembler

An assembler must do the following

1. Generate instruction

a. Evaluate the mnemonics in the operation field to produce the machine

code

b. Evaluate the subfield-fine the value of each symbol. Process literals and

assign addresses.

2. Process pseudo ops

a. Pass 1 (Define symbol and literals)

i. Determine length of machine instruction (MOTGET)

ii. Keep track of location counter (LC)

iii. Remember value of symbol until pass 2 (STSTO)

iv. Process some pseudo ops(POTGET1)

v. Remember literal (LITSTO)

b. Pass 2 (Generate object Program)

i. Look up value of symbol (STGET)

ii. Generate instruction (MOTGET2)

iii. Generate data (for DS, DC and Literal)

iv. Process pseudo ops (POTGET2)

Design data structure for assembler design in Pass-1 and Pass-2 with flow chart

Pass -1

1. Input source program

2. A location counter used to keep track of each instruction location.

3. A table, the machine –operation table (MOT) that indicate the symbolic

mnemonics for each instruction and its length (tow, four or six bytes)

4. A table, the pseudo operation table (POT) that indicate the symbolic mnemonics

and action to be taken for each pseudo-op in pass-1

5. A table, the literal table (LT) that is used to store each literal encounter and its

corresponding assigned location.

6. A table, the symbol table (ST) that is used to store each label and its

corresponding value.

7. A copy of the input to be used later by Pass-2. This may be stored in a secondary

storage device.

Pass-2

1. Copy of source program input to pass-1

2. Location counter

3. A table the MOT that indicates for each instruction

a. Symbolic

b. Mnemonics

c. Length

d. Binary machine op-code

e. Format (RR, RS, RX, SI, SS)

4. A table the POT that indicates for each pseudo-op the symbolic mnemonic and

the action to be taken in Pass-2

5. The ST prepare by Pass-1, containing each label and its corresponding value.

6. A table, BT that indicate which register are currently specified by base register by

USING pseudo-ops and what are the specified contents of these register.

7. A work space INSR that is to hold each instruction as its various parts are being

assembled together.

8. A workspace PRINT LINE used to produce a printed listing

9. A workspace PUNCH CARD used prior to actual outputting for converting

assembled instruction into the format needed by the loader.

10. An output deck of assembled instruction in the format needed by the loader.

Format of Database

1. Machine Operation Table (MOT)

Fig machine op table for pass-1 and pass-2 the op code is the key and its value is

the binary op-code equivalent which is stored for use in generating machine op-

code. The instruction length is stored for use in updating the location counter, the

instruction format for use in forming the machine language equivalent.

2. Pseudo Operation Table (POT)

The table will actually contain the physical address. Fig POT for pass-1, each

pseudo-op is listed with and associated pointer to the assembler routine for

processing the pseudo-op.

3. Symbol Table (ST)

Symbol table is usually hash-organized. It contains all relevant information about

symbol defined and used in the source program. Information regarding all forward

references in a symbol table, for each symbol and address is generated randomly

and the information regarding that symbol get the same address conflict is resolve

by using collision handling techniques.

 The relative location indicator tells the assembler whether the value of the

symbol is absolute or relative base of the program.

4. Base Table (BT)

Base table is used by the assembler to generate the proper base register references

in machine instruction and to compute the correct offsets, when generating an

address, the assembler referencing the base register table to chose a base register

that will contains a value close to the symbolic references. The address is the

information using that base register.

Difference Between

Difference between compiler and interpreter

Sr. No. Compiler Interpreter

1 Scans the entire program first and

then translate it into machine code

Translate the program line-by-line.

2 Convert the entire program to

machine code; when all the syntax

errors have been removed execution

takes place.

Each time the program is executed,

every line is checked for syntax error

and then converted to equivalent

machine code

3 Execution time is less Execution time is more

4 Machine code can be saved and used;

source code and compiler no longer

needed.

Machine code cannot be saved;

interpreter is always required for

translation.

5 Since source code is not required

tampering with the source code is not

possible

Source code can be easily modified

and hence no security of programs.

6 Slow for debugging Fast for debugging

Difference between process and Programs

Sr. No. Process Programs

1 A process is an instance of program in

execution

Program is a set of instructions written

to carry out a particular task

2 Process is a dynamic concept Program is a static concept

3 A process is termed as an ‘active

entity’ since it is always stored in the

main memory and disappears if the

machine is power cycled. Several

processes may be associated with a

same program.

A program is an executable file

residing on the disk (secondary storage)

in a directory

4

It is read into the primary memory and

executed by the kernel.

5 A process is the actual execution of

those instructions.

A computer program is a passive

collection of instructions;

Difference between multiprogramming and multiprocessing

Sr.

No.
Multiprocessing Multiprogramming

1
Multiprocessing refers to

processing of multiple

processes at same time by

multiple CPUs.

Multiprogramming keeps

several programs in main

memory at the same time and

execute them concurrently

utilizing single CPU.

2 It utilizes multiple CPUs. It utilizes single CPU.

3 It permits parallel processing. Context switching takes place.

4 Less time taken to process the

jobs.

More Time taken to process the

jobs.

5 It facilitates much efficient

utilization of devices of the

computer system.

Less efficient than

multiprocessing.

6
Usually more expensive.

Such systems are less

expensive.

Difference between Open Subroutine and Closed Subroutine

Sr.

No.
Open Subroutine Closed Subroutine

1
Open subroutine is one

whose code inserted into

the main program

Close subroutine can be

stored outside the main

routine and control transfer

to the subroutine

2 If some open subroutine

where called four times. It

would appear in four

different placed in the

calling program

Close subroutine perform

transfer of control and

transfer of data

3 Arguments are passed in

the registers that are given

as arguments to the

subroutine.

Arguments may be placed

in registers or on the stack

4
Open Subroutines are very

efficient with no wasted

instructions

A subroutine also allows

you to debug code once and

then ensure that all future

instantiations of the code

will be correct

5
Open Subroutines are very

flexible and can be as

general as the program

wishes to make them

Any register that the

subroutine uses must first

be saved and then restored

after the subroutine

completes execution

Difference between Pure Procedure and Impure Procedure

Sr.

No.
Pure Procedure Impure Procedure

1
A pure procedure does not

modify itself.

Procedures that modify

themselves are called

impure procedures.

2

It can be shared by multiple

processors

Other program finds them

difficult to read and

moreover they cannot shard

by multiple processors.

3 Pure procedures are readily

reusable.

Impute procedures are not

readily reusable.

4 To ensure that the

instructions are the same

each time a program is

used.

Each processor executing

an impure procedure

modifies its contents.

5 Writing such procedure is a

good programming practice

Writing such procedure is a

poor programming practice

Difference between user viewpoint and System viewpoint

Operating System is designed both by taking user view and system view into

consideration.

1. The goal of the Operating System is to maximize the work and minimize the

effort of the user.

2. Most of the systems are designed to be operated by single user, however in some

systems multiple users can share resources, memory. In these cases Operating

System is designed to handle available resources among multiple users and CPU

efficiently.

3. Operating System must be designed by taking both usability and efficient

resource utilization into view.

4. In embedded systems (Automated systems) user view is not present.

5. Operating System gives an effect to the user as if the processor is dealing only

with the current task, but in background processor is dealing with several

processes.

System View

1. From the system point of view Operating System is a program involved with the

hardware.

2. Operating System is allocator, which allocate memory, resources among various

processes. It controls the sharing of resources among programs.

3. It prevents improper usage, error and handles deadlock conditions.

4. It is a program that runs all the time in the system in the form of Kernel.

5. It controls application programs that are not part of Kernel.

-----***-----

General Approaches to New Machines

In order to know a new machine we have a number of questions in mind. These

questions can be categorized as follows.

• Memory: Basic unit, size and addressing scheme.

• Registers Number of registers, and size, functions, interrelation of each register.

• Data: Types of data and their storing scheme.

• Instruction: Classes of instructions, allowable operations and their storing

scheme.

• Special Features: Additional features like interrupt and protections.

The lists of opcodes used in the program are as follows

• USING is a pseudo code the indicates to the assembler which general

purpose register to use as a base and what its contents will be. As we do not have

any specific general register acting as the base register, so it becomes necessary

to inform indicate a base register for the program. Because the address are

relative so by the knowledge of base and offset the program can be easily be

located and executed.

• BALR is machine opcode that load a register with the next address and

branch to the address in the second field. Since second operand is 0 so the

control will go to the next instruction.

• START is a pseudo opcode that tell the assembler where the beginning of the

program is and allows the user to give a name to the program.

• END is a pseudo code that tells the assembler that the last card of the program

has been reached.

• BR 14, the last machine opcode is used to branch to the location whose

address is in general purpose register 14. By convention, calling programs leave

their return address in register 14.

Literals

The same program is repeated by using literals, that are mechanisms where by the

assembler creates data areas for the programmer, containing constants he requests.

=F'10', =F'49', =F'4' are the literal which would be result in the creation of a data

area containing 10, 49 and 4 and replacement of the literal operand with the address of

the data it describes. L 3, =F'10' is translated by the assembler to point to a full word that

contains a 10. Generally the assembler keeps track of the literal with the help of a literal

table. This table will contain all the constants that have been requested through the use

of literal. A pseudo opcode LTORG place the literal at an earlier location. This is

required because, the program may be using 10000 data and it become difficult for the

offset of the load instruction to reach the literal at the end of the program.

Data Format of IBM 360/370

The 360 may store several different types of data as is depicted in the figure. The

groups of bits stored in memory are interpreted by 360 processor in several ways.

The list of different interpretation are shown in the figure are as follow.

----/////-----

Instruction Format

The instructions in 360 can be arithmetic, logical, control or transfer and special

interrupt instructions. The format of 360 instructions is as in figure above.

There are five types of instructions that differ in the type of operands they use.

Register operand refers to the data stored in the 16 general purpose registers (32

bits each). Registers being high-speed circuits provide faster access to data than the data

in the core.

E.g. Add register 3, 4 causes the contents of the contents of the register 4 to be added to

that of register 3 and stored back in the register 3. The instruction is represented as given

in the diagram. The is called as RR format. A total of two bytes are required to

represent the RR instruction 8 bits for opcode and 4 bits each of register(8+4+4=16

bits =2 bytes).

The address of ith storage operand is computed from the instruction in the

following manner:

Address = c (Bi)+c(Xi)+Di (RX format)

or = c (Bi) +Di (RS, SI, SS format)

Unit 2

Definition

Macros are single-line abbreviations for a certain group of instructions. Once the

macro is defined, these groups of instructions can be used anywhere in a program.

It is sometimes necessary for an assembly language programmer to repeat some blocks of

code in the course of a program. The programmer needs to define a single machine instruction to

represent a block of code for employing a macro in the program. The macro proves to be useful

when instead of writing the entire block again and again, you can simply write the macro that you

have already defined. An assembly language macro is an instruction that represents several other

machine language instructions at once.

Macro facility permits you to attach a name to the sequence that is occurring several

times in a program and then you can easily use this name when that sequence is encountered. All

you need to do is to attach a name to a sequence with the help of the macro instruction definition.

The following structure shows how to define a macro in a program:

This structure describes the macro definition in which the first line of the definition is the

MACRO pseudo-op. Following line is the name line for macro, which identifies the macro

instruction name. The line following the macro name includes the sequence of instructions that

are being abbreviated. Each instruction comprises of the actual macro instruction. The last

statement in the macro definition is MEND pseudo-op. This pseudo-op denotes the end of the

macro definition and terminates the definition of macro instruction.

MACRO EXPANSION

Once a macro is being created, the interpreter or compiler automatically replaces the

pattern, described in the macro, when it is encountered. The macro expansion always happens at

the compile-time in compiled languages. The tool that performs the macro expansion is known as

macro expander. Once a macro is defined, the macro name can be used instead of using the entire

instruction sequence again and again.

As you need not write the entire program repeatedly while expanding macros, the

overhead associated with macros is very less. This can be explained with the help of the

following example.

The macro processor replaces each macro call with the following lines:

A 1, DATA

A 2, DATA

A 3, DATA

The process of such a replacement is known as expanding the macro. The macro definition itself

does not appear in the expanded source code. This is because the macro processor saves the

definition of the macro. In addition, the occurrence of the macro name in the source

program refers to a macro call. When the macro is called in the program, the sequence of

instructions corresponding to that macro name gets replaced in the expanded source.

NESTED MACRO CALLS

Nested macro calls refer to the macro calls within the macros. A macro is available

within other macro definitions also. In the scenario where a macro call occurs, which contains

another macro call; the macro processor generates the nested macro definition as text and places

it on the input stack. The definition of the macro is then scanned and the macro processor

compiles it. This is important to note that the macro call is nested and not the macro definition. If

you nest the macro definition, the macro processor compiles the same macro repeatedly,

whenever the section of the outer macro is executed. The following example can make you

understand the nested macro calls:

You can easily notice from this example that the definition of the macro ‘SUBST’

contains three separate calls to a previously defined macro ‘SUB1’. The definition of the macro

SUB1 has shortened the length of the definition of the macro ‘SUBST’. Although this technique

makes the program easier to understand, at the same time, it is considered as an inefficient

technique. This technique uses several macros that result in macro expansions on multiple levels.

This is clear from the example that a macro call, SUBST, in the source is expanded in the

expanded source (Level 1) with the help of SUB1, which is further expanded in the expanded

source (Level 2).

FEATURES OF MACRO FACILITY

The features of the macro facility are as follows:

• Macro instruction arguments

• Conditional macro expansion

• Macro instructions defining macros

1. Macro Instruction Arguments

The macro facility presented so far inserts block of instructions in place of macro calls. This

facility is not at all flexible, in terms that you cannot modify the coding of the macro name for a

specific macro call. An important extension of this facility consists of providing the arguments or

parameters in the macro calls. Consider the following program.

In this example, the instruction sequences are very much similar but these sequences are not

identical. It is important to note that the first sequence performs an operation on an operand

DATA1. On the other hand, in the second sequence the operation is being performed on operand

DATA2. The third sequence performs operations on DATA3. They can be considered to perform

the same operation with a variable parameter or argument. This parameter is known as a macro

instruction argument or dummy argument.

Notice that in this program, a dummy argument is specified on the macro name line and is

distinguished by inserting an ampersand (&) symbol at the beginning of the name. There is no

limitation on supplying arguments in a macro call. The important thing to understand about the

macro instruction argument is that each argument must correspond to a definition or dummy

argument on the macro name line of the macro definition. The supplied arguments are substituted

for the respective dummy arguments in the macro definition whenever a macro call is processed.

2. Conditional Macro Expansion

These macro expansions permit conditional reordering of the sequence of macro expansion. They

are responsible for the selection of the instructions that appear in the expansions of a macro call.

These selections are based on the conditions specified in a program. Branches and tests in the

macro instructions permit the use of macros that can be used for assembling the instructions. The

facility for selective assembly of these macros is considered as the most powerful programming

tool for the system software. The use of the conditional macro expansion can be explained with

the help of an example.

Consider the following set of instructions:

LOOP 1 A 1, DATA1

 A 2, DATA2

A 3, DATA3

:

:

LOOP 2 A 1, DATA3

A 2, DATA2

:

:

DATA1 DC F’5’

DATA2 DC F’10’

DATA3 DC F’15’

In this example, the operands, labels and number of instructions generated are different in each

sequence. Rewriting the set of instructions in a program might look like:

The labels starting with a period (.) such as .FINI are macro labels. These macro labels do

not appear in the output of the macro processor. The statement AIF (& COUNT EQ 1).FINI

directs the macro processor to skip to the statement labeled .FINI, if the parameter corresponding

to &COUNT is one. Otherwise, the macro processor continues with the statement that follows the

AIF pseudo-op. AIF pseudo-op performs an arithmetic test and since it is a conditional branch

pseudo-op, it branches only if the tested condition is true. Another pseudo-op used in this

program is AGO, which is an unconditional branch pseudo-op and works as a GOTO statement.

This is the label in the macro instruction definition that specifies the sequential processing of

instructions from the location where it appears in the instruction. These statements are indications

or directives to the macro processor that do not appear in the macro expansions.

3. Macro Instructions Defining Macros

A single macro instruction can also simplify the process of defining a group of similar

macros. The considerable idea while using macro instructions defining macros is that the inner

macro definition should not be defined until the outer macro has been called once. Consider a

macro instruction INSTRUCT in which another subroutine &ADD is also defined.

This is explained in the following macro instruction.

In this code, first the macro INSTRUCT has been defined and then within INSTRUCT, a new

macro &ADD is being defined. Macro definitions within macros are also known as “macro

definitions within macro definitions”.

DESIGN OF A MACRO PRE-PROCESSOR

A Macro pre-processor effectively constitutes a separate language processor with its own

language. A macro pre-processor is not really a macro processor, but is considered as a macro

translator. The approach of using macro pre-processor simplifies the design and implementation

of macro pre-processor. Moreover, this approach can also use the features of macros such as

macro calls within macros and recursive macros. Macro pre-processor recognises only the macro

definitions that are provided within macros. The macro calls are not considered here because the

macro pre-processor does not perform any macro expansion.

The macro preprocessor generally works in two modes: passive and active. The passive mode

looks for the macro definitions in the input and copies macro definitions found in the input to the

output. By default, the macro pre-processor works in the passive mode. The macro pre-processor

switches over to the active mode whenever it finds a macro definition in the input. In this mode,

the macro preprocessor is responsible for storing the macro definitions in the internal data

structures. When the macro definition is completed and the macros get translated, then the macro

pre-processor switches back to the passive mode.

Four basic tasks that are required while specifying the problem in the macro pre-processor are as

follows:

1. Recognising macro definitions: A macro pre-processor must recognize macro

definitions that are identified by the MACRO and MEND pseudo-ops. The macro

definitions can be easily recognised, but this task is complicated in cases where the macro

definitions appear within macros. In such situations, the macro pre-processor must

recognise the nesting and correctly matches the last MEND with the first MACRO.

2. Saving the definitions: The pre-processor must save the macro instructions definitions

that can be later required for expanding macro calls.

3. Recognising macro calls: The pre-processor must recognise macro calls along with the

macro definitions. The macro calls appear as operation mnemonics in a program.

4. Replacing macro definitions with macro calls: The pre-processor needs to expand

macro calls and substitute arguments when any macro call is encountered. The pre-

processor must substitute macro definition arguments within a macro call.

Implementation of Two-Pass Algorithm

The two-pass algorithm to design macro pre-processor processes input data into two passes. In

first pass, algorithm handles the definition of the macro and in second pass; it handles various

calls for macro. Both the passes of two-pass algorithm in detail are:

1. First Pass

The first pass processes the definition of the macro by checking each operation code of the

macro. In first pass, each operation code is saved in a table called Macro Definition Table

(MDT). Another table is also maintained in first pass called Macro Name Table (MNT). First

pass uses various other databases such as Macro Name Table Counter (MNTC) and Macro Name

Table Counter (MDTC). The various databases used by first pass are:

1. The input macro source deck.

2. The output macro source deck copies that can be used by pass 2.

3. The Macro Definition Table (MDT), which can be used to store the body of the macro

definitions. MDT contains text lines and every line of each macro definition, except the

MACRO line gets stored in this table. For example, consider the code described in macro

expansion section where macro INC used the macro definition of INC in MDT. Table 2.1

shows the MDT entry for INC macro:

4. The Macro Name Table (MNT), which can be used to store the names of defined macros.

Each MNT entry consists of a character string such as the macro name and a pointer such

as index to the entry in MDT that corresponds to the beginning of the macro definition.

Table 2.2 shows the MNT entry for INCR macro:

5. The Macro Definition Table Counter (MDTC) that indicates the next available entry in

the MDT.

6. The Macro Name Table Counter (MNTC) that indicates the next available entry in the

MNT.

7. The Argument List Array (ALA) that can be used to substitute index markers for dummy

arguments prior to store a macro definition. ALA is used during both the passes of the

macro pre-processor. During Pass 1, dummy arguments in the macro definition are

replaced with positional indicators when the macro definition is stored. These positional

indicators are used to refer to the memory address in the macro expansion. It is done in

order to simplify the later argument replacement during macro expansion. The ith dummy

argument on the macro name card is represented in the body of the macro by the index

marker symbol #. The # symbol is a symbol reserved for the use of macro pre-processor.

2. Second Pass

Second pass of two-pass algorithm examine each operation mnemonic such that it replaces macro

name with the macro definition. The various data-bases used by second pass are:

1. The copy of the input macro source deck.

2. The output expanded source deck that can be used as an input to then assembler.

3. The MDT that was created by pass 1.

4. The MNT that was created by pass 1.

5. The MDTP for indicating the next line of text that is to be used during macro expansion.

6. The ALA that is used to substitute macro calls arguments for the index markers in the

stored macro definition.

3 .Two-Pass Algorithm

In two-pass macro-preprocessor, you have two algorithms to implement, first pass and second

pass. Both the algorithms examines line by line over the input data available. Two algorithms to

implement two-pass macro-preprocessor are:

• Pass 1 Macro Definition

• Pass 2 Macro Calls and Expansion

Pass 1 - Macro Definition

Pass 1 algorithm examines each line of the input data for macro pseudo opcode. Following are the

steps that are performed during Pass 1 algorithm:

1. Initialize MDTC and MNTC with value one, so that previous value of MDTC and MNTC

is set to value one.

2. Read the first input data.

3. If this data contains MACRO pseudo opcode then

A. Read the next data input.

B. Enter the name of the macro and current value of MDTC in MNT.

C. Increase the counter value of MNT by value one.

D. Prepare that argument list array respective to the macro found.

E. Enter the macro definition into MDT. Increase the counter of MDT by value one.

F. Read next line of the input data.

G. Substitute the index notations for dummy arguments passed in macro.

H. Increase the counter of the MDT by value one.

I. If mend pseudo opcode is encountered then next source of input data is read.

J. Else expands data input.

 4. If macro pseudo opcode is not encountered in data input then

A. A copy of input data is created.

B. If end pseudo opcode is found then go to Pass 2.

C. Otherwise read next source of input data.

Pass 2 - Macro Calls and Expansion

Pass two algorithm examines the operation code of every input line to check whether it exist in

MNT or not. Following are the steps that are performed during second pass algorithm:

1. Read the input data received from Pass 1.

2. Examine each operation code for finding respective entry in the MNT.

3. If name of the macro is encountered then

A. A Pointer is set to the MNT entry where name of the macro is found. This pointer is

called

 Macro Definition Table Pointer (MDTP).

B. Prepare argument list array containing a table of dummy arguments.

C. Increase the value of MDTP by value one.

D. Read next line from MDT.

E. Substitute the values from the arguments list of the macro for dummy arguments.

F. If mend pseudo opcode is found then next source of input data is read.

G. Else expands data input.

4. When macro name is not found then create expanded data file.

5. If end pseudo opcode is encountered then feed the expanded source file to assembler for

processing.

6. Else read next source of data input.

Implementation of Single-Pass Algorithm

The single-pass algorithm allows you to define macro within the macro but not supports macro

calls within the macro. In the single-pass algorithm two additional Level Counter (MDLC).

Following is the usage of MDI and MDLC in single-pass algorithm:

• MDI indicator: Allows you to keep track of macro calls and macro definitions. During

expansion of macro call, MDI indicator has value ON and retains value OFF otherwise. If

MDI indicator is on, then input data lines are read from MDT until mend pseudo opcode

is not encountered. When MDI is off, then data input is read from data source instead of

MDI.

• MDLC indicator: MDLC ensures you that macro definition is stored in MDT. MDLC is

counters that keeps track of the numbers of macro1 and mend pseudo opcode found.

Single-pass algorithm combines both the algorithms defined above to implement two-

pass macro pre-processor. Following are the steps that are followed during single-pass

algorithm:

1. Initialize MDTC and MNTC to value one and MDLC to zero.

2. Set MDI to value OFF.

3. Performs read operation.

4. Examine MNT to get the match with operation code.

5. If macro name is found then

A. MDI is set to ON.

B. Prepare argument list array containing a table of dummy arguments.

C. Performs read operation.

6. Else it examines that macro pseudo opcode is encountered. If macro pseudo opcode is

found then

A. Enter the name of the macro and current value of MDTC in MNT at entry number

MNTC.

B. Increment the MNTC to value one.

C. Prepare argument list array containing a table of dummy arguments..

D. Enter the macro card into MDT.

E. Increment the MDTC to value one.

F. Increment the MDLC to value one.

G. Performs read operation.

H. Substitute the index notations for the arguments list of the macro for dummy

arguments.

I. Enter data input line into MDT.

J. Increment the MDTC to value one.

K. If macro pseudo opcode is found then increments the MDLC to value one and

performs read

 operation.

L. Else it checks for mend pseudo opcode if not found then performs read operation.

M. If mend pseudo opcode is found then decrement the MDLC to value one.

N. If MDLC is equal to zero then it goes to step 2. Otherwise, it performs read operation.

7. In case macro pseudo opcode is not found, then write it into expanded source card file.

If end pseudo opcode is found, then it feeds expanded source file to assembler for processing,

otherwise performs read operation at step 2.

Unit 3

INTRODUCTION

Earlier programmers used loaders that could take program routines stored in tapes and combine

and relocate them in one program. Later, these loaders evolved into linkage editor used for

linking the program routines but the program memory remained expensive and computers were

slow. A little progress in linking technology helped computers become faster and disks larger,

thus program linking became easier. For the easier use of memory space and efficiency in speed,

you need to use linkers and loaders.

Loaders and linker’s helps you to have a schematic flow of steps that you need to follow while

creating a program. Following are the steps that you need to perform when you write a program

in language:

1. Translation of the program, which is performed by a processor called translator.

2. Linking of the program with other programs for execution, this is performed by a

separate processor known as linker.

3. Relocation of the program to execute from the memory location allocated to it, which is

performed by a processor called loader.

4. Loading of the program in the memory for its execution, this is performed by a loader.

LOADERS

A loader is a program that performs the functions of a linker program and then immediately

schedules the resulting executable program for some kind of action. In other words, a loader

accepts the object program, prepares these programs for execution by the computer and then

initiates the execution. It is not necessary for the loader to save a program as an executable file.

The functions performed by a loader are as follows:

1. Memory Allocation allocates space in memory for the program.

2. Linking: Resolves symbolic references between the different objects.

3. Relocation adjusts all the address dependent locations such as address constants, in order

to correspond to the allocated space.

4. Loading places the instructions and data into memory.

Functions of Loader:

The loader is responsible for the activities such as allocation, linking, relocation and loading

1. It allocates the space for program in the memory, by calculating the size of the program.

This activity is called allocation.

2. It resolves the symbolic references (code/data) between the object modules by assigning

all the user subroutine and library subroutine addresses. This activity is called linking.

3. There are some address dependent locations in the program, such address constants must

be adjusted according to allocated space, such activity done by loader is called relocation.

4. Finally it places all the machine instructions and data of corresponding programs and

subroutines into the memory. Thus program now becomes ready for execution, this

activity is called loading.

1. Compile and Go Loader

Compile and go loader is also known as “assembler-and-go”. It is required to introduce the

term “segment” to understand the different loader schemes. A segment is a unit of

information such as a program or data that is treated as an entity and corresponds to a single

source or object deck. A figure shows the compile and go loader.

The compile and go loader executes the assembler program in one part of memory and

places the assembled machine instructions and data directly into their assigned memory

locations. Once the assembly is completed, the assembler transfers the control to the starting

instruction of the program.

Advantages

1. This scheme is easy to implement,

2. the assembler simply places the code into core and the loader, which consists of one

instruction, transfers control to the starting instruction of the newly assembled program.

Disadvantages

1. In this scheme, a portion of memory is wasted. This is mainly because the core occupied

by the assembler is not available to the object program.

2. It is essential to assemble the user’s program deck every time it is executed.

3. It is quite difficult to handle multiple segments, if the source programs are in different

languages. This disadvantage makes it difficult to produce orderly modular programs.

2. General Loader Scheme.

The concept of loaders can be well understood if one knows the general loader scheme. It

is recommended for the general loader scheme that the instructions and data should be produced

in the output, as they were assembled. This strategy, if followed, prevents the problem of wasting

core for an assembler. When the code is required to be executed, the output is saved and loaded in

the memory. The assembled program is loaded into the same area in core that it occupied earlier.

The output that contains a coded form of the instructions is called the object deck. The object

deck is used as intermediate data to avoid the circumstances in which the addition of a new

program to a system is required. The loader accepts the assembled machine instructions, data and

other information present in the object. The loader places the machine instructions and data in

core in an executable computer form. More memory can be made available to a user, since in this

scheme, the loader is assumed to be smaller than the assembler. Figure shows the general loader

scheme.

Advantages:

• The program need not be retranslated each time while running it. This is because initially

when source program gets executed an object program gets generated. Of program is not

modified, and then loader can make use of this object program to convert it to executable

form.

• There is no wastage of memory, because assembler is not placed in the memory, instead

of it, loader occupies some portion of the memory. And size of loader is smaller than

assembler, so more memory is available to the user.

• It is possible to write source program with multiple programs and multiple languages,

because the source programs are first converted to object programs always, and loader

accepts these object modules to convert it to executable form.

3. Absolute Loader

An absolute loader is the simplest type of loader scheme that fits the general model of

loaders. The assembler produces the output in the same way as in the “compile and go loader”.

The assembler outputs the machine language translation of the source program. The difference

lies in the form of data, i.e., the data in the absolute loader is punched on cards or you can say that

it uses object deck as an intermediate data. The loader in turn simply accepts the machine

language text and places it at the location prescribed by the assembler. When the text is being

placed into the core, it can be noticed that much core is still available to the user. This is because,

within this scheme, the assembler is not in the memory at the load time.

In the figure, the MAIN program is assigned to locations 1000-2470 and the SQRT

subroutine is assigned locations 4000-4770. This means the length of MAIN has increased to

more than 3000 bytes, as it can be noticed from figure 4.4. If the modifications are required to be

made in MAIN subroutine, then the end of MAIN subroutine, i.e., 1000+3000=4000, gets

overlapped with the start of SQRT, i.e., with 4000. Therefore, it is necessary to assign a new

location to SQRT. This can be made possible by changing the START pseudo-op card and

reassembling it. It is then quite obvious to modify all other subroutines that refer to address of

SQRT.

Advantages

1. Absolute loaders are simple to implement.

2. This scheme allows multiple programs or the source programs written different

languages. If there are multiple programs written in different languages then the

respective language assembler will convert it to the language and a common object file

can be prepared with all the ad resolution.

3. The task of loader becomes simpler as it simply obeys the instruction regarding where to

place the object code in the main memory.

4. The process of execution is efficient.

Disadvantages.

1. It is desirable for the programmer to specify the address in core where the program is to

be loaded.

2. A programmer needs to remember the address of each subroutine, if there are multiple

subroutines in the program.

3. Additionally, each absolute address is to be used by the programmer explicitly in the

other subroutines such that subroutine linkage can be maintained.

4. Relocating Loaders

Relocating loaders was introduced in order to avoid possible reassembling of all subroutines

when a single subroutine is changed. It also allows you to perform the tasks of allocation and

linking for the programmer. The example of relocating loaders includes the Binary Symbolic

Subroutine (BSS) loader. Although the BSS loader allows only one common data segment, it

allows several procedure segments. The assembler in this type of loader assembles each

procedure segment independently and passes the text and information to relocation and

intersegment references.

In this scheme, the assembler produces an output in the form of text for each source

program. A transfer vector that contains addresses, which includes names of the subroutines

referenced by the source program, prefixes the output text. The assembler would also provide the

loader with additional information such as the length of the entire program and also the length of

the transfer vector portion. Once this information is provided, the text and the transfer vector get

loaded into the core. Followed by this, the loader would load each subroutine, which is being

identified in the transfer vector. A transfer instruction would then be placed to the corresponding

subroutine for each entry in the transfer vector.

The output of the relocating assembler is the object program and information about all the

programs to which it references. Additionally, it also provides relocation information for the

locations that need to be changed if it is to be loaded in the core. This location may be arbitrary in

the core, let us say the locations, which are dependent on the core allocation. The BSS loader

scheme is mostly used in computers with a fixed-length direct-address instruction format.

Consider an example in which the 360 RX instruction format is as follows:

In this format, A2 is the 16-bit absolute address of the operand, which is the direct

address instruction format. It is desirable to relocate the address portion of every instruction. As a

result, the computers with a direct-address instruction format have much severe problems than the

computes having 360-type base registers. The 360- type base registers solve the problem using

relocation bits. The relocation bits are included in the object desk and the assembler associates a

bit with each instruction or address field. The corresponding address field to each instruction

must be relocated if the associated bit is equal to one; otherwise this field is not relocated.

5. Direct-Linking Loaders

A direct-linking loader is a general relocating loader and is the most popular loading scheme

presently used. This scheme has an advantage that it allows the programmer to use multiple

procedure and multiple data segments. In addition, the programmer is free to reference data or

instructions that are contained in other segments. The direct linking loaders provide flexible

intersegment referencing and accessing ability. An assembler provides the following information

to the loader along with each procedure or data segment.

This information includes:

• Length of segment.

• List of all the symbols and their relative location in the segment that are referred by other

segments.

• Information regarding the address constant which includes location in segment and

description about the revising their values.

• Machine code translation of the source program and the relative addresses assigned.

LINKAGE EDITOR

Supply information needed to allow references between them. A linkage editor is also known as

linker. To allow linking in a program, you need to perform:

• Program relocation

• Program linking

1. Program relocation

Program relocation is the process of modifying the addresses containing instructions of a

program. You need to use program relocation to allocate a new memory address to the

instruction. Instructions are fetched from the memory address and are followed sequentially to

execute a program. The relocation of a program is performed by a linker and for performing

relocation you need to calculate the relocation_factor that helps specify the translation time

address in every instruction. Let the translated and linked origins of a program P be t_origin and l

2. Program Linking

Linking in a program is a process of binding an external reference to a correct link address. You

need to perform linking to resolve external reference that helps in the execution of a program. All

the external references in a program are maintained in a table called name table (NTAB), which

contains the symbolic name for external references or an object module. The information

specified in NTAB is derived from

LINKTAB entries having type=PD. The algorithm that you use for program linking is:

DYNAMIC LINKING

Sophisticated operating systems, such as Windows allow you to link executable object modules to

be linked to a program while a program is running. This is known as dynamic linking. The

operating system contains a linker that determines functions, which are not specified in a

program. A linker searches through the specified libraries for the missing function and helps

extract the object modules containing the missing functions from the libraries. The libraries are

constructed in a way to be able to work with dynamic linkers. Such libraries are known as

dynamic link libraries (DLLs). Technically, dynamic linking is not like static linking, which is

done at build time. DLLs contain functions or routines, which are loaded and executed when

needed by a program. The advantages of DLLs are:

• Code sharing: Programs in dynamic linking can share an identical code instead of

creating an individual copy of a same library. Sharing allows executable functions and

routines to be shared by many application programs. For example, the object linking and

embedding (OLE) functions of OLE2.DLL can be invoked to allow the execution of

functions or routines in any program.

• Automatic updating: Whenever you install a new version of dynamic link library, the

older version is automatically overridden. When you run a program the updated version

of the dynamic link library is automatically picked.

• Securing: Splitting the program you create into several linkage units makes it harder for

crackers to read an executable file.

Unit 4

Unit -4

Common Object File Format (COFF)

This chapter describes the Common Object File Format (COFF). COFF is the format
of the output file produced by the assembler and the link editor.

The following are some key features of COFF:

• applications can add system-dependent information to the object file without
causing access utilities to become obsolete

• space is provided for symbolic information used by debuggers and other
applications

• programmers can modify the way the object file is constructed by providing
directives at compile time

The object file supports user-defined sections and contains extensive information
for symbolic software testing. An object file contains:

Object file format

FILE HEADER

Optional Information

Section 1 Header

...

Section n Header

Raw Data for Section 1

...

Raw Data for Section n

Relocation Info for Sect. 1

...

Relocation Info for Sect. n

Line Numbers for Sect. 1

...

Line Numbers for Sect. n

SYMBOL TABLE

STRING TABLE

The last four sections (relocation, line numbers, symbol table, and the string table)

may be missing if the program is linked with the -s option of the ld command, or if

the line number information, symbol table, and string table are removed by the

command. The line number information does not appear unless the program is

compiled with . Also, if there are no unresolved external references after linking, the

relocation information is no longer needed and is absent. The string table is also

absent if the source file does not contain any symbols with names longer than eight

characters.

File header

The file header contains the 20 bytes of information shown in. The last 2 bytes are

flags that are used by ld and object file utilities.

File header contents

Bytes Declaration Name Description

0-1 unsigned

short

f_magic Magic number

2-3 unsigned

short

f_nscns Number of sections

4-7 long int f_timdat Time and date stamp indicating when the file was

created, expressed as the number of elapsed

seconds since 00:00:00 GMT, January 1, 1970

8-11 long int f_symptr File pointer containing the starting address of the

symbol table

http://osr507doc.sco.com/en/man/html.CP/cc.CP.html
http://osr507doc.sco.com/en/topics/COFF_FileHeader.html#COFF_MagicNums

12-15 long int f_nsyms Number of entries in the symbol table

16-17 unsigned

short

f_opthdr Number of bytes in the optional header

18-19 unsigned

short

f_flags Flags (see ``File header flags'')

Magic numbers

The magic number specifies the target machine on which the object file is

executable.

Flags

The last 2 bytes of the file header are flags that describe the type of the object file.

Currently defined flags are found in the header file filehdr.h and are shown in ``File

header flags''.

File header flags

Mnemonic Flag Meaning

F_RELFLG 00001 Relocation information stripped from the file

F_EXEC 00002 File is executable (i.e., no unresolved external references)

F_LNNO 00004 Line numbers stripped from the file

F_LSYMS 00010 Local symbols stripped from the file

F_AR16WR 0000200 16-bit byte reversed word

F_AR32WR 0000400 32-bit byte reversed word

http://osr507doc.sco.com/en/topics/COFF_FileHeader.html#COFF_FileHdrFlagTbl
http://osr507doc.sco.com/en/topics/COFF_FileHeader.html#COFF_FileHdrFlagTbl
http://osr507doc.sco.com/en/topics/COFF_FileHeader.html#COFF_FileHdrFlagTbl

File header declaration

The C structure declaration for the file header is shown below. This declaration may

be found in the header file filehdr.h.

 Section headers

Every object file has a table of section headers to specify the layout of data within

the file. The section header table consists of one entry for every section in the file.

The information in the section header is described in.

Section header contents

Bytes Declaration Name Description

0-7 char s_name 8-character null padded section name

8-11 long int s_paddr Physical address of section

12-15 long int s_vaddr Virtual address of section

16-19 long int s_size Section size in bytes

20-23 long int s_scnptr File pointer to raw data

24-27 long int s_relptr File pointer to relocation entries

28-31 long int s_lnnoptr File pointer to line number entries

32-33 unsigned short s_nreloc Number of relocation entries

34-35 unsigned short s_nlnno Number of line number entries

36-39 long int s_flags Flags (see ``Section header flags'')

The size of a section is padded to a multiple of 4 bytes. File pointers are byte offsets

that can be used to locate the start of data, relocation, or line number entries for the

section. They can be readily used with the function fseek(S).

http://osr507doc.sco.com/en/topics/COFF_SectHdrFlags.html#COFF_SectHdrFlagTbl

Line numbers

When invoked with cc -g the compiler causes an entry in the object file for every

source line where a breakpoint can be inserted. You can then reference line

numbers when using a software debugger like sdb(CP). All line numbers in a section

are grouped by function as shown in ``Line number grouping''.

Line number grouping

symbol index 0

physical address line number

physical address line number

. .

. .

. .

symbol index 0

physical address line number

physical address line number

The first entry in a function grouping has line number 0 and has, in place of the

physical address, an index into the symbol table for the entry containing the

function name. Subsequent entries have actual line numbers and addresses of the

text corresponding to the line numbers. The line number entries are relative to the

beginning of the function and appear in increasing order of address.

Line number declaration

The structure declaration currently used for line number entries is shown below.

http://osr507doc.sco.com/en/man/html.CP/cc.CP.html
http://osr507doc.sco.com/en/man/html.CP/sdb.CP.html
http://osr507doc.sco.com/en/topics/COFF_LineNums.html#COFF_LineNumTbl

 struct lineno

 {

 union

 {

 long l_symndx; /* symtbl index of func name */

 long l_paddr; /* paddr of line number */

 } l_addr;

 unsigned short l_lnno; /* line number */

 };

Symbol table

Because of symbolic debugging requirements, the order of symbols in the symbol

table is very important. Symbols appear in the sequence shown in ``COFF symbol

table''.

COFF symbol table

filename 1

function 1

C_WEAKEXT aliases

for function 1

function 1b (alias)

. . .

local symbols for function 1

function 2

C_WEAKEXT aliases

for function 2

http://osr507doc.sco.com/en/topics/COFF_SymTbl.html#COFF_SymTabTbl
http://osr507doc.sco.com/en/topics/COFF_SymTbl.html#COFF_SymTabTbl

. . .

local symbols for function 2

. . .

statics

. . .

filename 2

function 1

C_WEAKEXT aliases

for function 1

. . .

local symbols for function 1

. . .

statics

. . .

defined global symbols

undefined global symbols

The word ``statics'' in ``COFF symbol table'' means symbols defined with the C

language storage class static outside any function. The symbol table consists of at

least one fixed-length entry per symbol with some symbols followed by auxiliary

entries of the same size. The entry for each symbol is a structure that holds the

value, the type, and other information.

String table

Symbol table names longer than eight characters are stored contiguously in the

string table with each symbol name delimited by a null byte. The first four bytes of

the string table are the size of the string table in bytes; offsets into the string table,

therefore, are greater than or equal to 4. For example, given a file containing two

symbols (with names longer then eight characters, long_name_1 and another_one)

the string table has the format as shown in ``String table'':

http://osr507doc.sco.com/en/topics/COFF_StringTable.html#COFF_StringTableTbl

String table

`l' `o' ̀ n' ̀ g'

`_' `n' ̀ a' `m'

`e' ̀ _' `l' `\0'

`a' ̀ n' ̀ o' ̀ t'

`h' ̀ e' ̀ r' `_'

`o' ̀ n' ̀ e' `\0'

The index of long_name_1 in the string table is 4 and the index of another_one is

16.

Debugger

A debugger or debugging tool is a computer program that is used to test and

debug other programs (the "target" program). The code to be examined might

alternatively be running on an instruction set simulator (ISS), a technique that allows

great power in its ability to halt when specific conditions are encountered but which

will typically be somewhat slower than executing the code directly on the

appropriate (or the same) processor. Some debuggers offer two modes of

operation—full or partial simulation—to limit this impact.

A "trap" occurs when the program cannot normally continue because of a

programming bug or invalid data. For example, the program might have tried to use

an instruction not available on the current version of the CPU or attempted to access

unavailable or protected memory. When the program "traps" or reaches a preset

condition, the debugger typically shows the location in the original code if it is a

source-level debugger or symbolic debugger, commonly now seen in integrated

development environments. If it is a low-level debugger or a machine-language

debugger it shows the line in the disassembly

A debugger is a program that runs other programs, allowing the user to exercise
control over these programs, and to examine variables when problems arise.

GNU Debugger which is called gdb is the most popular debugger for UNIX systems
to debug C and C++ Programs.

GNU Debugger helps you in finding out followings:

• If a core dump happened then what statement or expression did the program
crash on?

• If an error occurs while executing a function, what line of the program
contains the call to that function, and what are the parameters?

• What are the values of program variables at a particular point during
execution of the program?

• What is the result of a particular expression in a program?

How GDB Debugs?

GDB allows you to do things like run the program up to a certain point then stop and
print out the values of certain variables at that point, or step through the program
one line at a time and print out the values of each variable after executing each line.

GDB uses a simple command line interface.

Note the Followings:

• Even though GDB can help you in finding out memory leakage related bugs
but it is not a tool to detect memory leakages

• GDB cannot be used for programs that do not compile without errors and it
does not help in fixing those errors.

Unit 5

Unit -5

Device driver (commonly referred to as a driver) is a computer program that operates or

controls a particular type of device that is attached to a computer. A driver provides a

software interface to hardware devices, enabling operating systems and other computer

programs to access hardware functions without needing to know precise details of the

hardware being used.

A driver typically communicates with the device through the computer bus or

communications subsystem to which the hardware connects. When a calling program

invokes a routine in the driver, the driver issues commands to the device. Once the device

sends data back to the driver, the driver may invoke routines in the original calling

program. Drivers are hardware-dependent and operating-system-specific. They usually

provide the interrupt handling required for any necessary asynchronous time-dependent

hardware interface.

Types of Device Drivers

A device driver is a software module that resides within the Digital UNIX kernel and is

the software interface to a hardware device or devices. A hardware device is a peripheral,

such as a disk controller, tape controller, or network controller device. In general, there is

one device driver for each type of hardware device. Device drivers can be classified as:

• Block device drivers

• Character device drivers (including terminal drivers)

• Network device drivers

• Pseudodevice drivers

The following sections briefly discuss each type.

Block Device Driver

A block device driver is a driver that performs I/O by using file system block-sized

buffers from a buffer cache supplied by the kernel. The kernel also provides for the

device driver support interfaces that copy data between the buffer cache and the address

space of a process.

Block device drivers are particularly well-suited for disk drives, the most common block

devices. For block devices, all I/O occurs through the buffer cache.

Character Device Driver

A character device driver does not handle I/O through the buffer cache, so it is not tied to

a single approach for handling I/O. You can use a character device driver for a device

such as a line printer that handles one character at a time. However, character drivers are

not limited to performing I/O one character at a time (despite the name ``character''

driver). For example, tape drivers frequently perform I/O in 10K chunks. You can also

use a character device driver when it is necessary to copy data directly to or from a user

process.

Because of their flexibility in handling I/O, many drivers are character drivers. Line

printers, interactive terminals, and graphics displays are examples of devices that require

character device drivers.

A terminal device driver is actually a character device driver that handles I/O character

processing for a variety of terminal devices. Like any character device, a terminal device

can accept or supply a stream of data based on a request from a user process. It cannot be

mounted as a file system and, therefore, does not use data caching.

Network Device Driver

A network device driver attaches a network subsystem to a network interface, prepares

the network interface for operation, and governs the transmission and reception of

network frames over the network interface.

 Pseudo device Driver

Not all device drivers control physical hardware. Such device drivers are called

``pseudodevice'' drivers. Like block and character device drivers, pseudodevice drivers

make use of the device driver interfaces. Unlike block and character device drivers,

pseudodevice drivers do not operate on a bus. One example of a pseudodevice driver is

the pseudo terminal or pty terminal driver, which simulates a terminal device. The pty

terminal driver is a character device driver typically used for remote logins.

When a Device Driver Is Called

• Auto configuration

The kernel calls a device driver (specifically, the driver's probe interface) at auto

configuration time to determine what devices are available and to initialize them.

• I/O operations

The kernel calls a device driver to perform I/O operations on the device. These

operations include opening the device to perform reads and writes and closing the

device.

• Interrupt handling

The kernel calls a device driver to handle interrupts from devices capable of

generating them.

• Special requests

The kernel calls a device driver to handle special requests through ioctl calls.

• Reinitialization

The kernel calls a device driver to reinitialize the driver, the device, or both when

the bus (the path from the CPU to the device) is reset.

• User-level requests to the sysconfig utility

The kernel calls a device driver (specifically, the driver's configure interface) to

handle requests that result from use of the sysconfig utility. The sysconfig

utility allows a system manager to dynamically configure, unconfigure, query,

and reconfigure a device. These requests cause the kernel to call the device

driver's configure interface. In addition, the driver's configure interface

performs one-time initializations when called by the boot software or by the

sysconfig utility.

Figure 1-1: When the Kernel Calls a Device Driver

Some of these requests, such as input or output, result directly or indirectly from

corresponding system calls in a user program. Other requests, such as the calls at auto

configuration time, do not result from system calls but from activities that occur at boot

time.

Device Driver Configuration

Device driver configuration consists of the tasks necessary to incorporate device drivers

into the kernel to make them available to system management and other utilities. After

you write your device driver you need to create a single binary module (a file with a .mod

extension) from the driver source file (a file with a .c extension). After you create the

single binary module, you need to configure it into the kernel so that you can test it on a

running system. There are two methods of device driver configuration: static

configuration and dynamic configuration. Static configuration consists of the tasks and

tools necessary to link a device driver (single binary module) directly into the kernel at

kernel build time. Dynamic configuration consists of the tasks and tools necessary to link

a device driver (single binary module) directly into the kernel at any point in time.

describes how to create a single binary module and then how to statically and

dynamically configure the single binary module (the device driver) into the kernel.

Do not confuse device driver configuration (static configuration and dynamic

configuration), which encompasses the tools and steps for configuring the driver into the

kernel, with auto configuration and configuration. Auto configuration is a process that

determines what hardware actually exists during the current instance of the running

kernel at static configuration time. The auto configuration software (specifically, the bus's

confl1 interface) calls the driver's probe, attach, and slave interfaces. Thus, the

driver's probe, attach, and slave interfaces cooperate with the bus's confl1 interface to

determine if devices exist and are functional on a given system.

Configuration is a process associated with handling user-level requests to the sysconfig

utility to dynamically configure, unconfigure, query, and reconfigure devices. The

cfgmgr framework calls the driver's configure interface as a result of these sysconfig

utility requests. The cfgmgr framework also calls the driver's configure interface as a

result of static configuration requests. Thus, the driver's configure interface cooperates

with the cfgmgr framework to statically configure and to dynamically configure,

unconfigure, query, and reconfigure devices. The driver's configure interface also

cooperates with the cfgmgr framework to perform one-time initialization tasks such as

allocating memory, initializing data structures and variables, and adding driver entry

points to the sent table. A driver's configure interface should be implemented to handle

static and dynamic configuration.

The Role of the Device Driver

In a Unix system, several concurrent processes attend to different tasks. Each process

asks for system resources, be it computing power, memory, network connectivity, or

some other resource. The kernel is the big chunk of executable code in charge of handling

all such requests. Though the distinction between the different kernel tasks isn't always

clearly marked, the kernel's role can be split, as shown in Figure 1-1, into the following

parts:

Process management

The kernel is in charge of creating and destroying processes and handling their

connection to the outside world (input and output). Communication among

different processes (through signals, pipes, or interprocess communication

primitives) is basic to the overall system functionality and is also handled by the

kernel. In addition, the scheduler, which controls how processes share the CPU, is

part of process management. More generally, the kernel's process management

activity implements the abstraction of several processes on top of a single CPU or

a few of them.

Memory management

The computer's memory is a major resource, and the policy used to deal with it is

a critical one for system performance. The kernel builds up a virtual addressing

space for any and all processes on top of the limited available resources. The

different parts of the kernel interact with the memory-management subsystem

through a set of function calls, ranging from the simple malloc free pair to much

more exotic functionalities.

File systems

Unix is heavily based on the file system concept; almost everything in Unix can

be treated as a file. The kernel builds a structured file system on top of

unstructured hardware, and the resulting file abstraction is heavily used

throughout the whole system. In addition, Linux supports multiple file system

types, that is, different ways of organizing data on the physical medium. For

example, diskettes may be formatted with either the Linux-standard ext2 file

system or with the commonly used FAT file system.

Device control

Almost every system operation eventually maps to a physical device. With the

exception of the processor, memory, and a very few other entities, any and all

device control operations are performed by code that is specific to the device

being addressed. That code is called a device driver. The kernel must have

embedded in it a device driver for every peripheral present on a system, from the

hard drive to the keyboard and the tape streamer. This aspect of the kernel's

functions is our primary interest in this book.

Networking

Networking must be managed by the operating system because most network

operations are not specific to a process: incoming packets are asynchronous

events. The packets must be collected, identified, and dispatched before a process

takes care of them. The system is in charge of delivering data packets across

program and network interfaces, and it must control the execution of programs

according to their network activity. Additionally, all the routing and address

resolution issues are implemented within the kernel.

Comparison of Windows and UNIX Environments

This section compares the Windows and UNIX architectures, emphasizing the areas that

directly affect software development in a migration project.

Kernels and APIs

As with most operating systems, Windows and UNIX both have kernels. The kernel

provides the base functionality of the operating system. The major functionality of the

kernel includes process management, memory management, thread management,

scheduling, I/O management, and power management.

In UNIX, the API functions are called system calls. System calls are a programming

interface common to all implementations of UNIX. The kernel is a set of functions that

are used by processes through system calls.

Windows has an API for programming calls to the executive. In addition to this, each

subsystem provides a higher-level API. This approach allows Windows operating

systems to provide different APIs, some of which mimic the APIs provided by the

kernels of other operating systems. The standard subsystem APIs include the Windows

API (the Windows native API) and the POSIX API (the standards-based UNIX API).

Windows Subsystems

A subsystem is a portion of the Windows operating system that provides a service to

application programs through a callable API.

Subsystems come in two varieties, depending upon the application program that finally

handles the request:

• Environment subsystems. These subsystems run in a user mode and provide

functions through a published API. The Windows API subsystem provides an API

for operating system services, GUI capabilities, and functions to control all user

input and output. The Win32 subsystem and POSIX subsystem are part of the

environment subsystems and are described as follows:

o Win32 subsystem. The Win32 environment subsystem allows

applications to benefit from the complete power of the Windows family of

operating systems. The Win32 subsystem has a vast collection of

functions, including those required for advanced operating systems, such

as security, synchronization, virtual memory management, and threads.

You can use Windows APIs to write 32-bit and 64-bit applications that run

on all versions of Windows.

o POSIX subsystem and Windows Services for UNIX. To provide more

comprehensive support for UNIX programs, Windows uses the Interix

subsystem. Interix is a multiuser UNIX environment for a Windows-based

computer. Interix conforms to the POSIX.1 and POSIX.2 standards. It

provides all features of a traditional UNIX operating system, including

pipes, hard links, symbolic links, UNIX networking, and UNIX graphical

support through the X Windows system. It also includes case-sensitive file

names, job control tools, compilation tools, and more than 300 UNIX

commands and tools, such as KornShell, C Shell, awk, and vi.

Because it is layered on top of the Windows kernel, the Interix subsystem

is not an emulation. Instead, it is a native environment subsystem that

integrates with the Windows kernel, just as the Win32 subsystem does.

Shell scripts and other scripted applications that use UNIX and POSIX.2

tools run under Interix.

• Integral subsystems. These subsystems perform key operating system functions

and run as a part of the executive or kernel. Examples are the user-mode

subsystems, Local Security Authority subsystem (LSASS), and Remote Procedure

Call subsystem (RPCSS).

Kernel Objects and Handles

Kernel objects are used to manage and manipulate resources—such as files,

synchronization objects, and pipes—across the processes. These kernel objects are owned

by the kernel and not by the process. Handles are the opaque numbers or the data type

used to represent the objects and to uniquely identify the objects. To interact with an

object, you must obtain a handle to the object.

In UNIX, the kernel object can be created using the system calls and it returns an

unsigned integer. There is no exact equivalent of handles in UNIX.

In Windows, Windows APIs are used to create the kernel object and it returns a

Windows-specific data type called HANDLE.

Hardware Drivers

Hardware drivers are system software used to interact the hardware devices with the

operating system.

In UNIX, there are several different ways to manage drivers. Some UNIX

implementations allow dynamic loading and unloading of drivers, whereas other

implementations do not. The UNIX vendor usually provides drivers. The range of Intel

hardware supported for UNIX is typically smaller than that for Windows.

In Windows, the Windows driver model provides a platform for developing drivers for

industry-standard hardware devices attached to a Windows-based system. The key to

developing a good driver package is to provide reliable setup and installation procedures

and interactive GUI tools for configuring devices after the installation. In addition, the

hardware must be compatible with Windows Plug and Play technology in order to

provide a user-friendly hardware installation.

Process Management

A process is usually defined as the instance of the running program. Process management

describes how the operating systems manage the multiple processes running at a

particular instance of time. Multitasking operating systems such as Windows and UNIX

must manage and control many processes simultaneously. Both Windows and UNIX

operating systems support processes and threads.

The following sections provide more details on process management in both UNIX and

Windows:

• Multitasking. UNIX is a multiprocessing, multiuser system. At any given point,

you can have many processes running on UNIX. Consequently, UNIX is very

efficient at creating processes.

Windows has evolved greatly from its predecessors, such as Digital Equipment

Corporation’s VAX/VMS. It is now a preemptive multitasking operating system.

As a result, Windows relies more heavily on threads than processes. (A thread is a

construct that enables parallel processing within a single process.) Creating a new

process is a relatively expensive operation while creating a new thread is not as

expensive in terms of system resources like memory and time. Hence,

multiprocess-oriented applications on UNIX typically translate to multithreaded

applications on the Windows platform, thus saving such system resources as

memory and time.

• Multiple users. One key difference between UNIX and Windows is in the

creation of multiple user accounts on a single computer.

When you log on to a computer running UNIX, a shell process is started to

service your commands. The UNIX operating system keeps track of the users and

their processes and prevents processes from interfering with one another. The

operating system does not come with any default interface for user interaction.

However, the shell process on the computer running UNIX can connect to other

computers to load third-party UIs.

When a user logs on interactively to a computer running Windows, the Win32

subsystem’s Graphical Identification and Authentication dynamic-link library

(GINA) creates the initial process for that user, which is known as the user

desktop, where all user interaction or activity takes place. The desktop on the

user's computer is loaded from the server. Only the user who is logged on has

access to the desktop. Other users are not allowed to log on to that computer at the

same time. However, if a user employs Terminal Services or Citrix, Windows can

operate in a server-centric mode just as UNIX does.

The Windows operating system supports multiple users simultaneously through

the command line and a GUI. The latter requires the use of Windows Terminal

Services. The UNIX operating system supports multiple simultaneous users

through the command line and through a GUI. The latter requires the use of X

Windows. Windows comes with a default command shell (cmd.exe); UNIX

typically includes several shells and encourages each user to choose a shell as the

user’s default shell. Both operating systems provide complete isolation between

simultaneous users. There are some key differences between the two: Windows

comes with a “single user” version that allows one user at a time (Windows XP)

as well as a multiuser server version (Windows Server). It is rare for a Windows

Server system to have multiple simultaneous command-line users.

• Multithreading. Most new UNIX kernels are multithreaded to take advantage of

symmetric multiprocessing (SMP) computers. Initially, UNIX did not expose

threads to programmers. However, POSIX has user-programmable threads. There

is a POSIX standard for threads (called Pthreads) that all current versions of

UNIX support.

In Windows, creating a new thread is very efficient. Windows applications are

capable of using threads to take advantage of SMP computers and to maintain

interactive capabilities when some threads take a long time to execute.

• Process hierarchy. When a UNIX-based application creates a new process, the

new process becomes a child of the process that created it. This process hierarchy

is often important, and there are system calls for manipulating child processes.

Unlike UNIX, Windows processes do not share a hierarchical relationship. The

creating process receives the process handle and ID of the process it created, so a

hierarchical relationship can be maintained or simulated if required by the

application. However, the operating system treats all processes like they belong to

the same generation. Windows provides a feature called Job Objects, which

allows disparate processes to be grouped together and adhere to one set of rules.

Signals, Exceptions, and Events

In both operating systems, events are signaled by software interrupts. A signal is a

notification mechanism used to notify a process that some event has taken place or to

handle the interrupt information from the operating system. An event is used to

communicate between the processes. Exceptions occur when a program executes

abnormally because of conditions outside the program's control.

In UNIX, signals are used for typical events, simple interprocess communication (IPC),

and abnormal conditions such as floating point exceptions.

Windows has the following mechanisms:

• Windows supports some UNIX signals and others can be implemented using

Windows API and messages.

• An event mechanism that handles expected events, such as communication

between two processes.

• An exception mechanism that handles nonstandard events, such as the termination

of a process by the user, page faults, and other execution violations.

Daemons and Services

A daemon is a process that detaches itself from the terminal and runs disconnected in the

background, waiting for requests and responding to them. A service is a special type of

application that is available on Windows and runs in the background with special

privileges.

In UNIX, a daemon is a process that the system starts to provide a service to other

applications. Typically, the daemon does not interact with users. UNIX daemons are

started at boot time from init or rc scripts. To modify such a script, it needs to be opened

in a text editor and the values of the variables in the script need to be physically changed.

On UNIX, a daemon runs with an appropriate user name for the service that it provides or

as a root user.

A Windows service is the equivalent of a UNIX daemon. It is a process that provides one

or more facilities to client processes. Typically, a service is a long-running, Windows-

based application that does not interact with users and, consequently, does not include a

UI. Services may start when the system restarts and then continue running across logon

sessions. Windows has a registry that stores the values of the variables used in the

services. Control Panel provides a UI that allows users to set the variables with the valid

values in the registry. The security context of that user determines the capabilities of the

service. Most services run as either Local Service or Network Service. The latter is

required if the service needs to access network resources and must run as a domain user

with enough privileges to perform the required tasks.

Virtual Memory Management

Virtual memory is a method of extending the available physical memory or RAM on a

computer. In a virtual memory system, the operating system creates a pagefile, or

swapfile, and divides memory into units called pages. Virtual memory management

implements virtual addresses and each application is capable of referencing a physical

chunk of memory, at a specific virtual address, throughout the life of the application.

Both UNIX and Windows use virtual memory to extend the memory available to an

application beyond the actual physical memory installed on the computer. For both

operating systems, on 32-bit architecture, each process gets a private 2 GB of virtual

address space. This is called user address space or process address space. The operating

system uses 2 GB of virtual address space, called system address space or operating

system memory. On 64-bit architecture, each process gets 8 terabytes of user address

space.

File Systems and Networked File Systems

This section describes the file system characteristics of UNIX and Windows. Both UNIX

and Windows support many different types of file system implementations. Some UNIX

implementations support Windows file system types, and there are products that provide

Windows support for some UNIX file system types.

File system characteristics and interoperability of file names between UNIX and

Windows are discussed as follows:

• File names and path names. Everything in the file system is either a file or a

directory. UNIX and Windows file systems are both hierarchical, and both

operating systems support long file names of up to 255 characters. Almost any

character is valid in a file name, except the following:

o In UNIX: /

o In Windows: ?, ", /, \, >, <, *, |, and :

UNIX file names are case sensitive while Windows file names are not.

In UNIX, a single directory known as the root is at the top of the hierarchy. You

locate all files by specifying a path from the root. UNIX makes no distinction

between files on a local hard drive partition, CD-ROM, floppy disk, or network

file system (NFS). All files appear in one tree under the same root.

The Windows file system can have many hierarchies, for example, one for each

partition and one for each network drive. A UNIX system provides a single file

system tree, with a single root, to the applications it hosts. Mounted volumes

(whether local devices or network shares) are "spliced" into that tree at locations

determined by the system administrator. The Windows operating system exposes

a forest of file system trees, each with its own root, to the applications it hosts.

Mounted volumes appear as separate trees ("drive letters") as determined by the

administrator or user. Both UNIX and Windows provide a tree view of all

network-accessible shares. UNIX provides an administrator-defined view of these

shares through an automounter mechanism, while Windows provides a full view

through the Universal Naming Convention (UNC) pathname syntax.

• Server message block (SMB) and Common Internet File System (CIFS). One

of the earliest implementations of network resource sharing for the Microsoft MS-

DOS® platform was network basic input/output system (NetBIOS). The features

of NetBIOS allow it to accept disk I/O requests and direct them to file shares on

other computers. The protocol used for this was named server message block

(SMB). Later, additions were made to SMB to apply it to the Internet, and the

protocol is now known as Common Internet File System (CIFS).

UNIX supports this through a software option called Samba. Samba is an open-

source, freeware, server-side implementation of a UNIX CIFS server.

In Windows, the server shares a directory, and the client then connects to the

Universal Naming Convention (UNC) to connect to the shared directory. Each

network drive usually appears with its own drive letter, such as X.

• Windows and UNIX NFS interoperability. UNIX and Windows can

interoperate using NFS on Windows or CIFS on UNIX. There are a number of

commercial NFS products for Windows. For UNIX systems, Samba is an

alternative to installing NFS client software on Windows-based computers for

interoperability with UNIX-based computers. It also implements NetBIOS-style

name resolution and browsing. Microsoft offers a freely downloadable NFS

Server, Client, and Gateway as part of Windows Services for UNIX 3.5

installation. Windows Services for UNIX also provide a number of services for

interoperability between Windows-based and UNIX-based computers.

Security

This section describes some of the security implementation details and differences

between UNIX and Windows:

• User authentication. A user can log on to a computer running UNIX by entering

a valid user name and password. A UNIX user can be local to the computer or

known on a Network Information System (NIS) domain (a group of cooperating

computers). In most cases, the NIS database contains little more than the user

name, password, and group.

A user can log on to a computer running Windows by entering a valid user name

and password. A Windows user can be local to the computer, can be known on a

Windows domain, or be known in the Microsoft Active Directory® directory

service. The Windows domain contains only a user name, the associated

password, and some user groups. Active Directory contains the same information

as the Windows domain and may contain the contact information of the user,

organizational data, and certificates.

• UNIX versus Windows security. UNIX uses a simple security model. The

operating system applies security by assigning permissions to files. This model

works because UNIX uses files to represent devices, memory, and even processes.

When a user logs on to the system with a user name and a password, UNIX starts

a shell with the UID and GID of that user. From then on, the permissions assigned

to the UID and GID, or the process, control all access to files and other resources.

Most UNIX vendors can provide Kerberos support, which raises their

sophistication to about that of Windows.

Windows uses a unified security model that protects all objects from unauthorized

access. The system maintains security information for:

o Users. System users are people who log on to the system, either

interactively by entering a set of credentials (typically user name and

password) or remotely through the network. Each user’s security context

is represented by a logon session.

o Objects. These are the secured resources (for example, files, computers,

synchronization objects, and applications) that a user can access.

• Active Directory. Windows Server 2003 uses the Active Directory directory

service to store information about objects. These objects include users, computers,

printers, and every domain on one or more wide area networks (WANs). Active

Directory can scale from a single computer to many large computer networks. It

provides a store for all the domain security policy and account information.

Networking

Networking basically provides the communication between two or more computers. It

defines various sets of protocols, configures the domains, IP addresses, and ports, and

communicates with the external devices like telephones or modems and data transfer

methods. It also provides the standard set of API calls to allow applications to access the

networking features.

The primary networking protocol for UNIX and Windows is TCP/IP. The standard

programming API for TCP/IP is called sockets. The Windows implementation of sockets

is known as Winsock (formally known as Windows Sockets). Winsock conforms well to

the Berkeley implementation, even at the API level. The key difference between UNIX

sockets and Winsock exists in asynchronous network event notification. There is also a

difference in the remote procedure calls (RPC) implementation in UNIX and Windows.

User Interfaces

The user interface (UI) provides a flexible way of communicating between the users,

applications, and the computer.

The UNIX UI was originally based on a character-oriented command line, whereas the

Windows UI was based on GUI. UNIX originated when graphic terminals were not

available. However, the current versions of UNIX support the graphical user interface

using the X Windows system. Motif is the most common windowing system, library, and

user-interface style built on X Windows. This allows the building of graphical user

interface applications on UNIX.

The Windows user interface was designed to take advantage of advancements in the

graphics capabilities of computers. It can be used by all applications—including both

client side and server side—and can also be used for tasks such as service administration.

Windows contains the Graphics Device Interface (GDI) engine to support the graphical

user interface.

System Configuration

UNIX users generally configure a system by editing the configuration files with any of

the available text editors. The advantage of this mechanism is that the user does not need

to learn how to use a large set of configuration tools, but must only be familiar with an

editor and possibly a scripting language. The disadvantage is that the information in the

files comes in various formats; hence the user must learn the various formats in order to

change the settings. UNIX users often employ scripts to reduce the possibility of

repetition and error. In addition, they can also use NIS to centralize the management of

many standard configuration files. Although different versions of UNIX have GUI

management tools, such tools are usually specific to each version of UNIX.

Windows has GUI tools for configuring the system. The advantage of these tools is that

they can offer capabilities depending on what is being configured. In recent years,

Microsoft Management Console (MMC) has provided a common tool and UI for creating

configuration tools. Windows provides a scripting interface for most configuration needs

through the Windows Script Host (WSH). Windows provides WMI (Windows

Management Instrumentation), which can be used from scripts. Windows also includes

extensive command-line tools for controlling system configuration. In Windows Server

2003, anything that can be done to manage a system through a GUI can be done through

a command-line tool as well.

Interprocess Communication

An operating system designed for multitasking or multiprocessing must provide

mechanisms for communicating and sharing data between applications. These

mechanisms are called interprocess communication (IPC).

UNIX has several IPC mechanisms that have different characteristics and which are

appropriate for different situations. Shared memory, pipes, and message queues are all

suitable for processes running on a single computer. Shared memory and message queues

are suitable for communicating among unrelated processes. Pipes are usually chosen for

communicating with a child process through standard input and output. For

communications across the network, sockets are usually the chosen technique.

Windows also has many IPC mechanisms. Like UNIX, Windows has shared memory,

pipes, and events (equivalent to signals). These are appropriate for processes that are

local to a computer. In addition to these mechanisms, Windows supports

clipboard/Dynamic Data Exchange (DDE), and Component Object Model (COM).

Winsock and Microsoft Message Queuing are good choices for cross-network tasks.

Other cross-network IPC mechanisms for Windows include remote procedure calls

(RPCs) and mail slots. RPC has several specifications and implementations, developed

by third-party vendors, which support client server applications in distributed

environments. The most prevalent RPC specifications are Open Network Computing

(ONC) by Sun Microsystems and Distributed Computing Environment (DCE) by Open

Software Foundation. UNIX systems support interoperability with Windows RPC. UNIX

does not implement mailslots.

Synchronization

In a multithreaded environment, threads may need to share data between them and

perform various actions. These operations require a mechanism to synchronize the

activity of the threads. These synchronization techniques are used to avoid race

conditions and to wait for signals when resources are available.

UNIX environments use several techniques in the Pthreads implementation to achieve

synchronization. They are:

• Mutexes

• Condition variables

• Semaphores

• Interlocked exchange

Similarly, the synchronization techniques available in the Windows environment are:

• Spinlocks

• Events

• Critical sections

• Semaphores

• Mutexes

• Interlocked exchange

DLLs and Shared Libraries

Windows and UNIX both have a facility that allows the application developer to put

common functionality in a separate code module. This feature is called a shared library in

UNIX and a dynamic-link library (DLL) in Windows. Both allow application developers

to link together object files from different compilations and to specify which symbols

will be exported from the library for use by external programs. The result is the capability

to reuse code across applications. The Windows operating system and most Windows

programs use many DLLs.

Windows DLLs do not need to be compiled to position-independent code (PIC), while

UNIX shared objects must be compiled to PIC. However, the exact UNIX behavior can

be emulated in Windows by pre-mapping different DLLs at different fixed addresses.

Component-based Development

Component-based development is an extension to the conventional software development

where the software is assembled by integrating several components. The components

themselves may be written in different technologies and languages, but each has a unique

identity, and each of them exposes common interfaces so that they can interact with other

components.

UNIX supports CORBA as the main component-based development tool. However, it is

not a standard component of the UNIX system; you have to obtain a CORBA

implementation from another source.

On the other hand, the Windows environment offers a wide range of component-based

development tools and technologies. This includes:

• COM

• COM+

• Distributed COM (DCOM)

• .NET components

Middleware

This section compares the various middleware solutions available for UNIX-based and

Windows-based applications. Middleware technologies are mostly used to connect the

presentation layer with the back-end business layers or data sources. One of the most

prominent middleware technologies used in applications is a message queuing system.

Message queuing is provided as a feature in AT&T System V UNIX and can be achieved

through sockets in Berkeley UNIX versions. These types of memory queues are most

often used for IPC and do not meet the requirements for persistent store and forward

messaging.

To meet these requirements, versions of the IBM MQSeries and the BEA Systems

MessageQ (formally the DEC MessageQ) are available for UNIX. Microsoft provides

similar functionality with Message Queuing for Windows.

Transaction Processing Monitors

A transaction processing monitor (TP monitor) is a subsystem that groups sets of related

database updates and submits them to a database as a transaction. These transactions,

often monitored and implemented by the TP monitors, are known as online transaction

processing (OLTP). OLTP is a group of programs that allow real-time updating,

recording, and retrieval of data to and from a networked system. OLTP systems have

been implemented in the UNIX environments for many years. These systems perform

such functions as resource management, threading, and distributed transaction

management.

Although OLTP was originally developed for UNIX, many OLTP systems have

Windows versions. Windows also ships with its own transaction manager. In addition,

gateways exist to integrate systems that use different transaction monitors.

Shells and Scripting

A shell is a command-line interpreter that accepts typed commands from a user and

executes the resulting request. Every shell has its own set of programming features

known as scripting languages. Programs written through the programming features of a

shell are called shell scripts. As with shell scripts, scripting languages are interpreted.

Windows and UNIX support a number of shells and scripting languages, some of which

are common to both operating systems. Examples are: Rexx, Python, and Tcl/Tk.

Command-Line Shells

A number of standard shells are provided in the UNIX environment as part of the

standard installation. They are:

• Bourne shell (sh)

• C shell (csh)

• Korn shell (ksh)

• Bourne Again Shell (bash)

On the Windows platform, Cmd.exe is the command prompt or the shell.

Windows versions of the Korn shell and the C shell are delivered with the Windows

Services for UNIX 3.5, MKS, and Cygwin products.

Scripting Languages

In UNIX, there are three main scripting languages that correspond to the three main

shells: the Bourne shell, the C shell, and the Korn shell. Although all the scripting

languages are developed from a common core, they have certain shell-specific features to

make them slightly different from each other. These scripting languages mainly use a

group of UNIX commands for execution without the need for prior compilation. Some of

the external scripting languages that are also supported on the UNIX environment are

Perl, Rexx, and Python.

On the Windows environment, WSH is a language-independent environment for running

scripts and is compatible with the standard command shell. It is often used to automate

administrative tasks and logon scripts. WSH provides objects and services for scripts,

establishes security, and invokes the appropriate script engine, depending on the script

language. Objects and services supplied allow the script to perform such tasks as

displaying messages on the screen, creating objects, accessing network resources, and

modifying environment variables and registry keys. WSH natively supports VBScript and

JScript. Other languages that are available for this environment are Perl, Rexx, and

Python. WSH is built-in to all current versions of Windows and can be downloaded or

upgraded from Microsoft.

Development Environments

The generic UNIX development environment uses a set of command-line tools. In

addition, there are many third- party integrated development environments (IDEs)

available for UNIX. Most of the character-based and visual IDEs provide the necessary

tools, libraries, and headers needed for application development

The Windows development environment can be of two types: a standard Windows

development environment or a UNIX-like development environment such as Windows

Services for UNIX.

The standard Windows development environment uses the Microsoft Platform Software

Development Kit (SDK) and Microsoft Visual Studio® .NET. The platform SDK

delivers documentation for developing Windows-based applications, libraries, headers,

and definitions needed by language compilers. It also includes a rich set of command-line

and stand-alone tools for building, debugging, and testing applications. It is available at

no cost from the MSDN Web site.

The Microsoft Visual Studio .NET environment delivers a complete set of tools for

application development, including the development of multitier components, user

interface design, and database programming and design. It also provides several language

tools, editing tools, debugging tools, performance analysis tools, and application

installation tools.

The development environment of Windows Services for UNIX contains documentation,

tools, API libraries, and headers needed by language compilers. It also comes with a

UNIX development environment, with tools such as GNU gcc, g++, g77 compilers, and a

gdb debugger, which makes compilation of UNIX applications possible on the Windows

environment.

Application Architectures

The following sections introduce and discuss different application architectures and how

these applications are implemented on UNIX and Windows platforms.

Distributed Applications

Distributed applications are logically partitioned into multiple tiers: the view or the

presentation tier, the business tier, and the data storage and access tier. A simple

distributed application model consists of a client that communicates with the middle tier,

which consists of the application server and an application containing the business logic.

The application, in turn, communicates with a database that stores and supplies the data.

The most commonly used databases in UNIX applications are Oracle and DB2. You can

either run the application’s current database (for example, Oracle) on Windows (that is,

migrate the existing database from UNIX to Windows) or migrate the database to

Microsoft SQL Server™. In some cases, the best migration decision is a conversion to

SQL Server.

Another option available is Oracle. It offers a range of features available to both

Windows Server 2003 and UNIX. You may choose to use these features with the current

Oracle database. By separating the platform migration from the database migration, you

have greater flexibility in migrating database applications.

Next is the presentation tier, which provides either a thick or a thin client interface to the

application. UNIX applications may use XMotif to provide a thick client interface. In

Windows, a thick client can be developed using the Win32 API, GDI+. The .NET

Framework provides Windows Forms that help in rapid development of thick clients.

Either one of these two methods can be used while migrating the thick client from UNIX

to Windows.

Workstation Applications

Workstation-based applications run at the UNIX workstation (desktop) computer and

access data that resides on network file shares or database servers. Workstation-based

applications have the following architectural characteristics:

• They can be single-process applications or multiple-process applications.

• They use character-based or GUI-based (for example, X Windows or OpenGL)

UIs.

• They access a file server (through NFS) or a database server for data resources.

• They access a computer server for computer-intensive services (for example,

finite element models for structural analysis).

The Windows environment supports a similar workstation application using client/server

technology.

Web Applications

Web applications from a UNIX Web server are normally one of the following types:

• Common Gateway Interface (CGI). CGI is a standard for connecting external

applications with information servers, such as Hypertext Transfer Protocol

(HTTP) or Web servers. CGI has long been out of favor because of performance

problems.

• Java Server Page (JSP). Java Server Page (JSP) technology also allows for the

development of dynamic Web pages. JSP technology uses Extensible Markup

Language (XML)-like tags and scriptlets written in the Java programming

language to encapsulate the logic that generates the content for the page. The

application logic can reside in server-based resources (for example, the JavaBean

component architecture) that the page accesses by using these tags and scriptlets.

All HTML or XML formatting tags are passed directly back to the response page.

• HTML. Hypertext Markup Language is the authoring language used to create

documents on the World Wide Web.

• PHP. PHP is a widely used, general-purpose scripting language that is especially

suited for Web development and can be embedded into HTML.

• JavaScript. JavaScript is an extension of HTML. JavaScript is a script language

(a system of programming codes) created by Netscape that can be embedded into

the HTML of a Web page to add functionality.

Web applications on UNIX can be used on Windows with minor configuration changes

on the Web server. You can also migrate Java-based Web applications on UNIX to

Microsoft Web technologies on Windows.

Graphics-Intensive Applications

Graphics-intensive applications may support additional UI standards, such as OpenGL.

OpenGL has become a widely used and supported two-dimensional and three-

dimensional graphics API. OpenGL fosters innovation and provides for faster application

development by incorporating a broad set of rendering, texture mapping, special effects,

and other powerful visualization functions. Developers can take advantage of the

capabilities of OpenGL across all popular desktop and workstation platforms, ensuring

wide application deployment.

OpenGL runs on every major operating system, including Macintosh OS, OS/2, UNIX,

Windows Server 2003, Windows XP, Linux, OPENStep, and BeOS. OpenGL also works

with every major windowing system, including Win32, Macintosh OS, Presentation

Manager, and X-Windows. OpenGL includes a full complement of graphics functions.

The OpenGL standard has language bindings for C, C++, Fortran, Ada, and Java;

therefore, applications that use OpenGL functions are typically portable across a wide

array of platforms.

System-Level Programs or Device Drivers

The existence of an appropriate device driver on the Windows platform is often a gating

factor for migrating applications that make use of nonstandard device drivers. Typically,

customers do not have access to device-driver source code and are therefore unable to

migrate a UNIX device driver to Windows. The topic of migrating device drivers is

highly specialized and is not covered in this guide. The Windows Driver Development

Kit (DDK) can be used to develop drivers on the Windows environment.

Q8 b) What are the steps involved in installing a device driver in UNIX system?

Explain the steps in details.

Ans-

Installing the device driver in a UNIX system involves the following steps:

1) compiling the device driver

2) Modifying the kernel configuration tables and files

3) Linking the device driver with the kernel object files to produce a new

kernel

4) Creating the necessary entries in the /dev directory

5) Rebooting the system with new kernel

1) Compiling the device driver

• Compiling the driver is similar to compiling any other C program

• Since the driver is not a stand-alone program it is always compiled t produce an

object rather than a linked executable files.

• System special flags are needed to ensure the correct part of include files are used

and that compiler generates a module appropriate for lining into the kernel

• The information must be obtained from system’s documentation.

2) Modifying or configuring the kernel

• kernel configuration tables are used to reflect the addition of new driver

• Methods varies between different version of Unix

• there are two config files used by the system to generate a are kernel are the

mdevice and sdevice file in /etc/conf/cd.d directory contains entry for each device

driver that exists on the system

• Sdevice contains information for each device driver that is to be incorporated into

the kernel

• Mdevice contains entry for each device driver that exist on the system

3) Linking the device driver with the kernel object to produce a new kernel

• system utility to run is idbuild

• once the kernel configuration tables have been modified the n we can

generate the new kernel

• The command to build a new kernel varies between different UNIX

system.

• On SVR 3.2 system the utility to run is idbuild. This program m will

generate a new UNIX kernel.

• On some SVR 3.2 systems the idbuild utility will ask us if we want the are

kernel to boot by default

• On others, the new kernel will automatically be used during the next boot

4) Creating the necessary entries in the /dev directory

• dev directory reference our device driver

• It can be done with mknod command

• On most system it will be automatic

• Node files has four fields

▪ Device Name

▪ Node Name

▪ Node type

▪ Minor Device Number

Q6 b) Explain the following terms in Direct linking loader

1) Global external symbol table (GEST)

2) Local external symbol array(LESA)

Ans-

3) Global external symbol table (GEST)

It is used to store the external definition by means of a segment definition (SD) or

Local Definition (LD) entry on an External Symbol Director (ESD) card. When

these symbols are encountered during pass 1, they are assigned an absolute core

address; this is stored along with the symbol in the GEST.

4) Local external symbol array(LESA)

In pass 2 of the loader the GEST and ESD information for each individual object

deck is merged to produce the Local external symbol array (LESA) that directly

relates the ID number and value it is necessary to create a separate LESA for

each segment.

Unit 6

Unit -6

Compiler

The word compilation is used to denote the task of translating high level language

(HLL) programs into machine language programs. Though the objective of this task

of translation is similar to that of an assembler, the problem of compilation is much

more complex than that of an assembler. A compiler is a program that does the

compilation task. A compiler recognizes programs in a particular HLL and produces

equivalent output programs appropriate for some particular computer

configuration (hardware and OS). Thus, an HLL program is to a great extent

independent of the configuration of the machine it will eventually run on, as long as

it is ensured that the program is compiled by a compiler that recognizes that HLL

and produces output for the required machine configuration. It is common for a

machine to have compilers that would translate programs to produce executables

for that machine (hosts). But there also are compilers that runs on one type of

machine but the output of which are programs that shall run on some other machine

configuration, such as generating an MS-DOS executable program by compiling an

HLL program in UNIX. Such a compiler is called a cross compiler. Another kind of

translator that accepts programs in HLL are known as interpreters. An interpreter

translates an input HLL program and also runs the program on the same machine.

Hence the output of running an interpreter is actually the output of the program

that it translates.

Important phases in Compilation

The following is a typical breakdown of the overall task of a compiler in an approximate

sequence -

• Lexical analysis

• Syntax analysis

• Intermediate code generation

• Code optimization

• Code generation.

Like an assembler, a compiler usually performs the above tasks by making multiple

passes over the input or some intermediate representation of the same. The compilation

task calls for intensive processing of information extracted from the input programs, and

hence data structures for representing such information need to be carefully selected.

During the process of translation a compiler also detects certain kinds of errors in the

input, and may try to take some recovery steps for these.

Lexical Analysis

Lexical analysis in a compiler can be performed in the same way as in an assembler.

Generally in an HLL there are more number of tokens to be recognized - various

keywords (such as, for, while, if, else, etc.), punctuation symbols (such as, comma, semi-

colon, braces, etc.), operators (such as arithmetic operators, logical operators, etc.),

identifiers, etc. Tools like lex or flex are used to create lexical analysers.

Syntax Analysis

Syntax analysis deals with recognizing the structure of input programs according to

known set of syntax rules defined for the HLL. This is the most important aspect in

which HLLs are significantly different from lower level languages such as assembly

language. In assembly languages the syntax rules are simple which roughly requires that

a program should be a sequence of statements, and each statement should essentially

contain a mnemonic followed by zero or more operands depending on the mnemonic.

Optionally, there can be also being an identifier preceding the mnemonic. In case of

HLLs, the syntax rules are much more complicated. In most HLLs the notion of a

statement itself is very flexible, and often allows recursion, making nested constructs

valid. These languages usually support multiple data types and often allow programmers

to define abstract data types to be used in the programs. These and many other such

features make the process of creating software easier and less error prone compared to

assembly language programming. But, on the other hand, these features make the process

of compilation complicated.

The non-trivial syntax rules of HLLs need to be cleverly specified using some suitable

notation, so that these can be encoded in the compiler program. One commonly used

formalism for this purpose is the Context Free Grammar (CFG). CFG is a formalism that

is more powerful than regular grammars (used to write regular expressions to describe

tokens in a lexical analyser). Recursion, which is a common feature in most constructs of

HLLs, can be defined using a CFG in a concise way, whereas a regular grammar is

incapable of doing so. It needs to be noted that there are certain constructs that cannot be

adequately described using CFG, and may require other more powerful formalisms, such

as Context Sensitive Grammars (CSG). A common notation used to write the rules of

CFG or CSG is the BNF (Backus Naur Form).

During syntax analysis, the compiler tries to apply the rules of the grammar of the input

HLL given using BNF, to recognise the structure of the input program. This is called

parsing and the module that performs this task is called a parser. From a somewhat

abstract point of view, the output of this phase is a parse tree that depicts how various

rules of the grammar can be repetitively applied to recognise the input program. If the

parser cannot create a parse tree for some given input program, then the input program is

not valid according to the syntax of the HLL.

The soundness of the CFG formalism and the BNF notation makes it possible to create

different types of efficient parsers to recognise input according to a given language.

These parsers can be broadly classified as top-down parsers and bottom-up parsers.

Recursive descent parsers and Predictive parsers are two examples of top-down parsers.

SLR parsers and LALR parser are two examples of bottom-up parsers. For certain simple

context free languages (languages that can be defined using CFG) simpler bottom-up

parsers can be written. For example, for recognising mathematical expressions, an

operator precedence parser can be created.

In creating a compiler, a parser is often built using tools such as yacc and bison. To do so

the CFG of the input language is written in BNF notation, and given as input to the tool

(along with other details).

Intermediate Code Generation

Having recognized a given input program as valid, a compiler tries to create the

equivalent program in the language of the target environment. In case of an assembler

this translation was somewhat simpler since the operation implied by the mnemonic

opcode in each statement in the input program, there is some equivalent machine opcode.

The number of operands applicable for each operation in the machine language is the

same as allowed for the corresponding assembly language mnemonic opcodes. Thus for

the assembly language the translation for each statement can be done for each statement

almost independently of the rest of the program. But, in case of an HLL, it is futile to try

to associate a single machine opcode for each statement of the input language. One of the

reasons for this is, as stated above, the extent of a statement is not always fixed and may

contain recursion. Moreover, data references in HLL programs can assume significant

levels of abstractions in comparision to what the target execution environment may

directly support. The task of associating meanings (in terms of primitive operations that

can be supported by a machine) to programs or segments of a program is called semantic

processing.

Though it is not entirely straightforward to associate target language operations to

statements in the HLL programs, the CFG for the HLL allows one to associate semantic

actions (or implications) for the various syntactic rules. Hence in the broad task of

translation, when the input program is parsed, a compiler also tries to perform certain

semantic actions corresponding to the various syntactic rules that are eventually applied.

However, most HLLs contain certain syntactic features for which the semantic actions

are to be determined using some additional information, such as the contents of the

symbol table. Hence, building and usage of data-structures such as the symbol table are

an important part of the semantic action that are performed by the compiler.

Upon carrying out the semantic processing a more manageable equivalent form of the

input program is obtained. This is stored (represented) using some Intermediate code

representation that makes further processing easy. In this representation, the compiler

often has to introduce several temporary variables to store intermediate results of various

operations. The language used for the intermediate code is generally not any particular

machine language, but is such which can be efficiently converted to a required machine

language (some form of assembly language can be considered for such use).

Code Optimisation

The programs represented in the intermediate code form usually contains much scope for

optimization both in terms of storage space as well as run time efficiency of the intended

output program. Sometimes the input program itself contains such scope. Besides that,

the process of generating the intermediate code representation usually leaves much room

for such optimization. Hence, compilers usually implement explicit steps to optimise the

intermediate code.

Code Generation

Finally, the compiler converts the (optimised) program in the intermediate code

representation to the required machine language. It needs to be noted that if the program

being translated by the compiler actually has dependencies on some external modules,

then linking has to be performed to the output of the compiler. These activities are

independent of whether the input program was in HLL or assembly language.

Lexical analysis

Lexical analysis is the process of converting a sequence of characters into a

sequence of tokens. A program or function which performs lexical analysis is called

a lexical analyzer, lexer, or scanner. A lexer often exists as a single function which

is called by a parser or another function.

Role of the lexical analyzer

The main task is to read the input characters and produce as output sequence of tokens

that the parser uses for syntax analysis.

 Fig 2.1 role of the lexical analyzer diagram

 Up on receiving a “get next token” command from the parser, the lexical analyzer reads

input characters until it can identify the next token.

 Its secondary tasks are,

• One task is stripping out from the source program comments and white space is in

the form of blank, tab, new line characters.

• Another task is correlating error messages from the compiler with the source

program.

Sometimes lexical analyzer is divided in to cascade of two phases.

 1) Scanning

 2) lexical analysis.

The scanner is responsible for doing simple tasks, while the lexical analyzer proper does

the more complex operations.

http://1.bp.blogspot.com/-X2Rmw7adir8/T-vzshXh_TI/AAAAAAAAAMM/tVrPSTTglrs/s1600/fig2.1.bmp

Recognition of tokens:

We learn how to express pattern using regular expressions. Now, we must study how to

take the patterns for all the needed tokens and build a piece of code that examines the

input string and finds a prefix that is a lexeme matching one of the

patterns.

 Stmt →if expr

then stmt

 | If expr then else stmt

 | є

Expr →term relop term

 | term

Term →id

 |number

For relop ,we use the comparison operations of languages like Pascal or SQL where = is

“equals” and < > is “not equals” because it presents an interesting structure of lexemes.

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names

of tokens as far as the lexical analyzer is concerned, the patterns for the tokens are

described using regular definitions.

digit -->[0,9]

digits --

>digit+

number -->digit(.digit)?(e.[+-]?digits)?

letter -->[A-Z,a-z]

 id --

>letter(letter/digit)*

 if -->

if

 then -->then

 else -->else

relop --></>/<=/>=/==/< >

In addition, we assign the lexical analyzer the job stripping out white space, by

recognizing the “token” we defined by:

 ws →(blank/tab/newline)+

Here, blank, tab and newline are abstract symbols that we use to express the ASCII

characters of the same names. Token ws is different from the other tokens in that ,when

we recognize it, we do not return it to parser ,but rather restart the lexical analysis from

the character that follows the white space . It is the following token that gets returned to

the parser.

 Lexeme Token Name Attribute Value

 Any ws _ _

 if if _

 then then _

 else else _

 Any id id pointer to table entry

 Any number number pointer to table

entry

 < relop LT

 <= relop LE

 = relop ET

 < > relop NE

Transition Diagram:

 Transition Diagram has a collection of nodes or circles, called states. Each state

represents a condition that could occur during the process of scanning the input looking

for a lexeme that matches one of several patterns.

 Edges are directed from one state of the transition diagram to another. Each edge is

labeled by a symbol or set of symbols.

If we are in one state s, and the next input symbol is a, we look for an edge out of state s

labeled by a. if we find such an edge ,we advance the forward pointer and enter the

state of the transition diagram to which that edge leads.

Some important conventions about transition diagrams are

 1. Certain states are said to be accepting or final .These states indicates that a lexeme has

been found, although the actual lexeme may not consist of all positions b/w the lexeme

Begin and forward pointers we always indicate an accepting state by a double circle.

 2. In addition, if it is necessary to return the forward pointer one position, then we shall

additionally place a * near that accepting state.

 3. One state is designed the state ,or initial state ., it is indicated by an edge labeled

“start” entering from nowhere .the transition diagram always begins in the state before

any input symbols have been used.

Theory
During the first phase the compiler reads the input and converts strings in the
source to tokens. With regular expressions we can specify patterns to lex so it can
generate code that will allow it to scan and match strings in the input. Each pattern
specified in the input to lex has an associated action. Typically an action returns a
token that represents the matched string for subsequent use by the parser. Initially
we will simply print the matched string rather than return a token value.

The following represents a simple pattern, composed of a regular expression, that
scans for identifiers. Lex will read this pattern and produce C code for a lexical

analyzer that scans for identifiers.

letter(letter|digit)*

http://2.bp.blogspot.com/-Bfn_hj-SfMM/T-v7I3fu1jI/AAAAAAAAAMY/iUga4Ezhjzo/s1600/fig2.2.bmp

This pattern matches a string of characters that begins with a single letter followed

by zero or more letters or digits. This example nicely illustrates operations allowed

in regular expressions:

repetition, expressed by the “*”
operator alternation, expressed by
the “|” operator concatenation

Any regular expression expressions may be expressed as a finite state automaton

(FSA). We can represent an FSA using states, and transitions between states. There

is one start state and one or more final or accepting states.

letter or digit

start letter other

0 1 2

Figure 3: Finite State Automaton

In Figure 3 state 0 is the start state and state 2 is the accepting state. As characters
are read we make a transition from one state to another. When the first letter is read
we transition to state 1. We remain in state 1 as more letters or digits are read.
When we read a character other than a letter or digit we transition to accepting
state 2. Any FSA may be expressed as a computer program. For example, our 3-state
machine is easily programmed:

start: goto state0

state0: read c
if c = letter goto state1

goto state0
state1: read c

if c = letter goto state1
if c = digit goto state1

goto state2

state2: accept string

6

This is the technique used by lex. Regular expressions are translated by lex to a

computer program that mimics an FSA. Using the next input character and current
state the next state is easily determined by indexing into a computer-generated state

table.

Now we can easily understand some of lex’s limitations. For example, lex cannot be
used to recognize nested structures such as parentheses. Nested structures are
handled by incorporating a stack. Whenever we encounter a “ (” we push it on the
stack. When a “)” is encountered we match it with the top of the stack and pop the
stack. However lex only has states and transitions between states. Since it has no
stack it is not well suited for parsing nested structures. Yacc augments an FSA with a
stack and can process constructs such as parentheses with ease. The important
thing is to use the right tool for the job. Lex is good at pattern matching. Yacc is
appropriate for more challenging tasks.

Practice

Metacharact
er Matches

. any character except newline

\n newline

*
zero or more copies of the preceding
expression

+
one or more copies of the preceding
expression

?
zero or one copy of the preceding
expression

^ beginning of line

$ end of line

a|b a or b

(ab)+ one or more copies of ab (grouping)

"a+b" literal " " (C escapes still work)

 a+b

[] character class

 Table 1: Pattern Matching Primitives

Expressio
n Matches

 abc abc

 abc* ab abc abcc abccc ...

 abc+ abc abcc abccc ...
 a(bc)+ abc abcbc abcbcbc ...

 a(bc)? a abc
, ,

 [abc] one of:

 a b c
 [a-z] any letter, a-z
 [a\-z] one of: , ,

 [-az] one a - z , ,

of:

 - a z

 [A-Za-z0-9]+
one or more alphanumeric
characters

 [\t\n]+ whitespace
 [^ab] anything except: ,

[a^b]
 one

of:
a b

 , ,

[a|b]
 one

of:
a ^ b

 , ,

a|b
 one

of:
a | b

 ,
 a b

Table 2: Pattern Matching Examples

Regular expressions in lex are composed of metacharacters (Table 1). Pattern-

matching examples are shown in Table 2. Within a character class normal operators

lose their meaning.

7

Two operators allowed in a character class are the hyphen (“-”) and circumflex
(“^”). When used between two characters the hyphen represents a range of
characters. The circumflex, when used as the first character, negates the expression.
If two patterns match the same string, the longest match wins. In case both matches
are the same length, then the first pattern listed is used.

... definitions ...
%%
... rules ...
%%
... subroutines ...

Input to Lex is divided into three sections with %% dividing the sections. This is

best illustrated by example. The first example is the shortest possible lex file:

%%

Input is copied to output one character at a time. The first %% is always required,
as there must always be a rules section. However if we don’t specify any rules then
the default action is to match everything and copy it to output. Defaults for input
and output are stdin and stdout, respectively. Here is the same example with
defaults explicitly coded:

%%
/* match everything except newline */

. ECHO;
/* match newline */

\n ECHO;

%%

int yywrap(void) {

return 1;
}

int main(void) {

yylex();

return 0;
}

Two patterns have been specified in the rules section. Each pattern must begin in
column one. This is followed by whitespace (space, tab or newline) and an optional
action associated with the pattern. The action may be a single C statement, or
multiple C statements, enclosed in braces. Anything not starting in column one is
copied verbatim to the generated C file. We may take advantage of this behavior to
specify comments in our lex file. In this example there are two patterns, “.” and “\n”,
with an ECHO action associated for each pattern. Several macros and variables are
predefined by lex. ECHO is a macro that writes code matched by the pattern. This is
the default action for any unmatched strings. Typically, ECHO is defined as:

#define ECHO fwrite(yytext, yyleng, 1, yyout)

Variable yytext is a pointer to the matched string (NULL-terminated) and yyleng is
the length of the matched string. Variable yyout is the output file and defaults to
stdout. Function yywrap is called by lex when input is exhausted. Return 1 if you
are done or 0 if more processing is required. Every C program requires a main
function. In this case we simply call yylex that is the main entry-point for lex. Some
implementations of lex include copies of main and yywrap in a library thus
eliminating the need to code them explicitly. This is why our first example, the
shortest lex program, functioned properly.

8

Name Function

int yylex(void)
call to invoke lexer, returns
token

char *yytext pointer to matched string
yyleng length of matched string
yylval value associated with token

int yywrap(void)
wrapup, return 1 if done, 0 if not
done

FILE *yyout output file
FILE *yyin input file
INITIAL initial start condition
BEGIN condition switch start condition

ECHO write matched string

Table 3: Lex Predefined Variables

Here is a program that does nothing at all. All input is matched but no action is

associated with any pattern so there will be no output.

%%
.
\n

The following example prepends line numbers to each line in a file. Some

implementations of lex predefine and calculate yylineno. The input file for lex is

yyin and defaults to stdin.

%{
int yylineno;

%}
%%
^(.*)\n printf("%4d\t%s", ++yylineno, yytext);
%%
int main(int argc, char *argv[]) { yyin

= fopen(argv[1], "r"); yylex();
fclose(yyin);

}

9

The definitions section is composed of substitutions, code, and start states. Code in
the definitions section is simply copied as-is to the top of the generated C file and
must be bracketed with “%{“ and “%}” markers. Substitutions simplify pattern-
matching rules. For example, we may define digits and letters:

digit [0-9] letter
[A-Za-z] %{

int count;
%}
%%

/* match identifier */
{letter}({letter}|{digit})* count++;
%%
int main(void) {

yylex();
printf("number of identifiers = %d\n", count);
return 0;

}

Whitespace must separate the defining term and the associated expression.
References to substitutions in the rules section are surrounded by braces ({letter})
to distinguish them from literals. When we have a match in the rules section the
associated C code is executed. Here is a scanner that counts the number of
characters, words, and lines in a file (similar to Unix wc):

%{
int nchar, nword, nline;

%}
%%

{ nline++; nchar++; }

\n
[^ \t\n]+ { nword++, nchar += yyleng; }
. { nchar++; }
%%
int main(void) {

yylex();
printf("%d\t%d\t%d\n", nchar, nword, nline);
return 0;

}

1
0

Yacc

Theory
Grammars for yacc are described using a variant of Backus Naur Form (BNF). This
technique, pioneered by John Backus and Peter Naur, was used to describe
ALGOL60. A BNF grammar can be used to express context-free languages. Most
constructs in modern programming languages can be represented in BNF. For
example, the grammar for an expression that multiplies and adds numbers is

E -> E + E
E -> E * E
E -> id

Three productions have been specified. Terms that appear on the left-hand side
(lhs) of a production, such as E (expression) are nonterminals. Terms such as id
(identifier) are terminals (tokens returned by lex) and only appear on the right-
hand side (rhs) of a production. This grammar specifies that an expression may be
the sum of two expressions, the product of two expressions, or an identifier. We can
use this grammar to generate expressions:

E -> E * E (r2)
-> E * z (r3)
-> E + E * z (r1)
-> E + y * z (r3)

-> x + y * z (r3)

At each step we expanded a term and replace the lhs of a production with the
corresponding rhs. The numbers on the right indicate which rule applied. To parse
an expression we need to do the reverse operation. Instead of starting with a single
nonterminal (start symbol) and generating an expression from a grammar we need
to reduce an expression to a single nonterminal. This is known as bottom-up or shift-
reduce parsing and uses a stack for storing terms. Here is the same derivation but in
reverse order:

1 . x + y * z shift
2 x . + y * z reduce(r3)
3 E . + y * z shift
4 E + . y * z shift
5 E + y . * z reduce(r3)
6 E + E . * z shift
7 E + E * . z shift
8 E + E * z . reduce(r3)

emit multiply

9 E + E * E . reduce(r2)
10 E + E . reduce(r1) emit add

11 E . accept

Terms to the left of the dot are on the stack while remaining input is to the right of
the dot. We start by shifting tokens onto the stack. When the top of the stack
matches the rhs of a production we replace the matched tokens on the stack with
the lhs of the production. In other words the matched tokens of the rhs are popped

off the stack, and the lhs of the production is pushed on the stack. The matched
tokens are known as a handle and we are reducing the handle to the lhs of the
production. This process continues until we have shifted all input to the stack and
only the starting nonterminal remains on the stack. In step 1 we shift the x to the
stack. Step 2 applies rule r3 to the stack to change x to E. We continue shifting and
reducing until a single nonterminal, the start symbol, remains in the stack. In step 9,
when we reduce rule r2, we emit the multiply

1
1

instruction. Similarly the add instruction is emitted in step 10. Consequently

multiply has a higher precedence than addition.

Consider the shift at step 6. Instead of shifting we could have reduced and apply rule
r1. This would result in addition having a higher precedence than multiplication.
This is known as a shift-reduce conflict. Our grammar is ambiguous because there is
more than one possible derivation that will yield the expression. In this case
operator precedence is affected. As another example, associativity in the rule

E -> E + E

is ambiguous, for we may recurse on the left or the right. To remedy the situation,

we could rewrite the grammar or supply yacc with directives that indicate which

operator has precedence. The latter method is simpler and will be demonstrated in

the practice section.

The following grammar has a reduce-reduce conflict. With an id on the stack we may

reduce to T, or E.

E -> T
E -> id
T -> id

Yacc takes a default action when there is a conflict. For shift-reduce conflicts yacc
will shift. For reduce-reduce conflicts it will use the first rule in the listing. It also
issues a warning message whenever a conflict exists. The warnings may be
suppressed by making the grammar unambiguous. Several methods for removing
ambiguity will be presented in subsequent sections.

Practice, Part I

... definitions ...
%%
... rules ...
%%
... subroutines ...

Input to yacc is divided into three sections. The definitions section consists of token

declarations and C code bracketed by “ %{“ and “%}”. The BNF grammar is placed in

the rules section and user subroutines are added in the subroutines section.

This is best illustrated by constructing a small calculator that can add and subtract

numbers. We’ll begin by examining the linkage between lex and yacc. Here is the
definitions section for the yacc input file:

%token INTEGER

This definition declares an INTEGER token. Yacc generates a parser in file y.tab.c

and an include file, y.tab.h:

#ifndef YYSTYPE

#define YYSTYPE int
#endif
#define INTEGER 258

extern YYSTYPE yylval;

1
2

Lex includes this file and utilizes the definitions for token values. To obtain tokens

yacc calls yylex . Function yylex has a return type of int that returns a token. Values

associated with the token are returned by lex in variable yylval. For example,

[0-9]+ {
yylval = atoi(yytext);
return INTEGER;

}

would store the value of the integer in yylval , and return token INTEGER to yacc.

The type of yylval is determined by YYSTYPE. Since the default type is integer this

works well in this case. Token values 0-255 are reserved for character values. For

example, if you had a rule such as

[-+] return *yytext; /* return operator */

the character value for minus or plus is returned. Note that we placed the minus
sign first so that it wouldn’t be mistaken for a range designator. Generated token
values typically start around 258 because lex reserves several values for end-of-file
and error processing. Here is the complete lex input specification for our calculator:

%{
#include <stdlib.h>

void yyerror(char *);

#include "y.tab.h" %}

%%

[0-9]+ {
yylval = atoi(yytext);
return INTEGER;

}

[-+\n] return *yytext;

[\t] ; /* skip whitespace */

. yyerror("invalid character");

%%

int yywrap(void) {

return 1;
}

Internally yacc maintains two stacks in memory; a parse stack and a value stack. The
parse stack contains terminals and nonterminals that represent the current parsing
state. The value stack is an array of YYSTYPE elements and associates a value with
each element in the parse stack. For example when lex returns an INTEGER token
yacc shifts this token to the parse stack. At the same time the corresponding yylval
is shifted to the value stack. The parse and value stacks are always synchronized so

finding a value related to a token on the stack is easily accomplished. Here is the
yacc input specification for our calculator:

1
3

%{
#include <stdio.h> int
yylex(void); void
yyerror(char *);

%}

%token INTEGER

%%

program:
{ printf("%d\n", $2); }

program expr '\n'
|

;
expr:

{ $$ = $1; }

INTEGER
| expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }

;

%%

void yyerror(char *s) {
fprintf(stderr, "%s\n", s);

}
int main(void) {

yyparse();
return 0;

}

The rules section resembles the BNF grammar discussed earlier. The left-hand side
of a production, or nonterminal, is entered left-justified and followed by a colon.

This is followed by the right-hand side of the production. Actions associated with a

rule are entered in braces.

With left-recursion, we have specified that a program consists of zero or more

expressions. Each expression terminates with a newline. When a newline is detected
we print the value of the expression. When we apply the rule

expr: expr '+' expr { $$ = $1 + $3; }

we replace the right-hand side of the production in the parse stack with the left-
hand side of the same production. In this case we pop “expr '+' expr” and push
“expr”. We have reduced the stack by popping three terms off the stack and pushing
back one term. We may reference positions in the value stack in our C code by
specifying “$1” for the first term on the right-hand side of the production, “$2” for
the second, and so on. “ $$” designates the top of the stack after reduction has taken
place. The above action adds the value associated with two expressions, pops three
terms off the value stack, and pushes back a single sum. As a consequence the parse
and value stacks remain synchronized.

1
4

Numeric values are initially entered on the stack when we reduce from INTEGER to expr.

After INTEGER is shifted to the stack we apply the rule

expr: INTEGER { $$ = $1; }

The INTEGER token is popped off the parse stack followed by a push of expr. For the value
stack we pop the integer value off the stack and then push it back on again. In other words
we do nothing. In fact this is the default action and need not be specified. Finally, when a
newline is encountered, the value associated with expr is printed.

In the event of syntax errors yacc calls the user-supplied function yyerror. If you need to
modify the interface to yyerror then alter the canned file that yacc includes to fit your
needs. The last function in our yacc specification is main … in case you were wondering
where it was. This example still has an ambiguous grammar. Although yacc will issue shift-
reduce warnings it will still process the grammar using shift as the default operation.

