
TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 1

 Session 2020-21

 Unit -1

Compiler Design

A compiler translates the code written in one language to some other language without changing

the meaning of the program. It is also expected that a compiler should make the target code

efficient and optimized in terms of time and space.

Compiler design principles provide an in-depth view of translation and optimization process.

Compiler design covers basic translation mechanism and error detection & recovery. It includes

lexical, syntax, and semantic analysis as front end, and code generation and optimization as

back-end.

Compiler Design – Overview

Computers are a balanced mix of software and hardware. Hardware is just a piece of mechanical

device and its functions are being controlled by a compatible software. Hardware understands

instructions in the form of electronic charge, which is the counterpart of binary language in

software programming. Binary language has only two alphabets, 0 and 1. To instruct, the

hardware codes must be written in binary format, which is simply a series of 1s and 0s. It would

be a difficult and cumbersome task for computer programmers to write such codes, which is why

we have compilers to write such codes.

Language Processing System

We have learnt that any computer system is made of hardware and software. The hardware

understands a language, which humans cannot understand. So we write programs in high-level

language, which is easier for us to understand and remember. These programs are then fed into a

series of tools and OS components to get the desired code that can be used by the machine. This

is known as Language Processing System.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 2

The high-level language is converted into binary language in various phases. A compiler is a

program that converts high-level language to assembly language. Similarly, an assembler is a

program that converts the assembly language to machine-level language.

Let us first understand how a program, using C compiler, is executed on a host machine.

 User writes a program in C language (high-level language).

 The C compiler, compiles the program and translates it to assembly program (low-level

language).

 An assembler then translates the assembly program into machine code (object).

 A linker tool is used to link all the parts of the program together for execution (executable

machine code).

 A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few other tools that

work closely with compilers.

Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool that produces input for

compilers. It deals with macro-processing, augmentation, file inclusion, language extension, etc.

Interpreter

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 3

An interpreter, like a compiler, translates high-level language into low-level machine language.

The difference lies in the way they read the source code or input. A compiler reads the whole

source code at once, creates tokens, checks semantics, generates intermediate code, executes the

whole program and may involve many passes. In contrast, an interpreter reads a statement from

the input, converts it to an intermediate code, executes it, then takes the next statement in

sequence. If an error occurs, an interpreter stops execution and reports it. whereas a compiler

reads the whole program even if it encounters several errors.

Assembler

An assembler translates assembly language programs into machine code.The output of an

assembler is called an object file, which contains a combination of machine instructions as well

as the data required to place these instructions in memory.

Linker

Linker is a computer program that links and merges various object files together in order to make

an executable file. All these files might have been compiled by separate assemblers. The major

task of a linker is to search and locate referenced module/routines in a program and to determine

the memory location where these codes will be loaded, making the program instruction to have

absolute references.

Loader

Loader is a part of operating system and is responsible for loading executable files into memory

and execute them. It calculates the size of a program (instructions and data) and creates memory

space for it. It initializes various registers to initiate execution.

Cross-compiler

A compiler that runs on platform (A) and is capable of generating executable code for platform

(B) is called a cross-compiler.

Source-to-source Compiler

A compiler that takes the source code of one programming language and translates it into the

source code of another programming language is called a source-to-source compiler.

A compiler can broadly be divided into two phases based on the way they compile.

Analysis Phase

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 4

Known as the front-end of the compiler, the analysis phase of the compiler reads the source

program, divides it into core parts and then checks for lexical, grammar and syntax errors.The

analysis phase generates an intermediate representation of the source program and symbol table,

which should be fed to the Synthesis phase as input.

Synthesis Phase

Known as the back-end of the compiler, the synthesis phase generates the target program with

the help of intermediate source code representation and symbol table.

A compiler can have many phases and passes.

 Pass : A pass refers to the traversal of a compiler through the entire program.

 Phase : A phase of a compiler is a distinguishable stage, which takes input from the

previous stage, processes and yields output that can be used as input for the next stage. A

pass can have more than one phase.

Phases of Compiler

The compilation process is a sequence of various phases. Each phase takes input from its

previous stage, has its own representation of source program, and feeds its output to the next

phase of the compiler. Let us understand the phases of a compiler.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 5

 Lexical Analysis

The first phase of scanner works as a text scanner. This phase scans the source code as a

stream of characters and converts it into meaningful lexemes. Lexical analyzer represents

these lexemes in the form of tokens as:
 <token-name, attribute-value>

 Syntax Analysis
The next phase is called the syntax analysis or parsing. It takes the token produced by

lexical analysis as input and generates a parse tree (or syntax tree). In this phase, token

arrangements are checked against the source code grammar, i.e. the parser checks if the

expression made by the tokens is syntactically correct.

 Semantic Analysis
Semantic analysis checks whether the parse tree constructed follows the rules of

language. For example, assignment of values is between compatible data types, and

adding string to an integer. Also, the semantic analyzer keeps track of identifiers, their

types and expressions; whether identifiers are declared before use or not etc. The

semantic analyzer produces an annotated syntax tree as an output.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 6

 Intermediate Code Generation

After semantic analysis the compiler generates an intermediate code of the source code

for the target machine. It represents a program for some abstract machine. It is in between

the high-level language and the machine language. This intermediate code should be

generated in such a way that it makes it easier to be translated into the target machine

code.

 Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be

assumed as something that removes unnecessary code lines, and arranges the sequence of

statements in order to speed up the program execution without wasting resources (CPU,

memory).

 Code Generation

In this phase, the code generator takes the optimized representation of the intermediate

code and maps it to the target machine language. The code generator translates the

intermediate code into a sequence of (generally) re-locatable machine code. Sequence of

instructions of machine code performs the task as the intermediate code would do.

 Symbol Table

It is a data-structure maintained throughout all the phases of a compiler. All the

identifier's names along with their types are stored here. The symbol table makes it easier

for the compiler to quickly search the identifier record and retrieve it. The symbol table is

also used for scope management.

Lexical Analysis

Tokens

Lexemes are said to be a sequence of characters (alphanumeric) in a token. There are some

predefined rules for every lexeme to be identified as a valid token. These rules are defined by

grammar rules, by means of a pattern. A pattern explains what can be a token, and these patterns

are defined by means of regular expressions.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 7

In programming language, keywords, constants, identifiers, strings, numbers, operators and

punctuations symbols can be considered as tokens.

For example, in C language, the variable declaration line

int value = 100;

contains the tokens:

int (keyword), value (identifier), = (operator), 100 (constant) and ;

(symbol).

Specifications of Tokens

Let us understand how the language theory undertakes the following terms:

Alphabets

Any finite set of symbols {0,1} is a set of binary alphabets, {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is

a set of Hexadecimal alphabets, {a-z, A-Z} is a set of English language alphabets.

Strings

Any finite sequence of alphabets is called a string. Length of the string is the total number of

occurrence of alphabets, e.g., the length of the string Rajesh is 6 and is denoted by |Rajesh| = 6.

A string having no alphabets, i.e. a string of zero length is known as an empty string and is

denoted by ε (epsilon).

Special Symbols

A typical high-level language contains the following symbols:-

Arithmetic Symbols Addition(+), Subtraction(-), Modulo(%), Multiplication(*), Division(/)

Punctuation Comma(,), Semicolon(;), Dot(.), Arrow(->)

Assignment =

Special Assignment +=, /=, *=, -=

Comparison ==, !=, <, <=, >, >=

Preprocessor #

Location Specifier &

Logical &, &&, |, ||, !

Shift Operator >>, >>>, <<, <<<

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 8

Language

A language is considered as a finite set of strings over some finite set of alphabets. Computer

languages are considered as finite sets, and mathematically set operations can be performed on

them. Finite languages can be described by means of regular expressions.

Longest Match Rule

When the lexical analyzer read the source-code, it scans the code letter by letter; and when it

encounters a whitespace, operator symbol, or special symbols, it decides that a word is

completed.

For example:

int intvalue;

While scanning both lexemes till ‘int’, the lexical analyzer cannot determine whether it is a

keyword int or the initials of identifier int value.

The Longest Match Rule states that the lexeme scanned should be determined based on the

longest match among all the tokens available.

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a

language is given priority over user input. That is, if the lexical analyzer finds a lexeme that

matches with any existing reserved word, it should generate an error.

Regular Expressions

The lexical analyzer needs to scan and identify only a finite set of valid string/token/lexeme that

belong to the language in hand. It searches for the pattern defined by the language rules.

Regular expressions have the capability to express finite languages by defining a pattern for

finite strings of symbols. The grammar defined by regular expressions is known as regular

grammar. The language defined by regular grammar is known as regular language.

Regular expression is an important notation for specifying patterns. Each pattern matches a set of

strings, so regular expressions serve as names for a set of strings. Programming language tokens

can be described by regular languages. The specification of regular expressions is an example of

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 9

a recursive definition. Regular languages are easy to understand and have efficient

implementation.

There are a number of algebraic laws that are obeyed by regular expressions, which can be used

to manipulate regular expressions into equivalent forms.

Operations

The various operations on languages are:

 Union of two languages L and M is written as

L U M = {s | s is in L or s is in M}

 Concatenation of two languages L and M is written as

LM = {st | s is in L and t is in M}

 The Kleene Closure of a language L is written as

L* = Zero or more occurrence of language L.

Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

 Union : (r)|(s) is a regular expression denoting L(r) U L(s)

 Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

 Kleene closure : (r)* is a regular expression denoting (L(r))*

 (r) is a regular expression denoting L(r)

Precedence and Associativity

 *, concatenation (.), and | (pipe sign) are left associative
 * has the highest precedence
 Concatenation (.) has the second highest precedence.
 | (pipe sign) has the lowest precedence of all.

Representing valid tokens of a language in regular expression

If x is a regular expression, then:

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 10

 x* means zero or more occurrence of x.

i.e., it can generate { e, x, xx, xxx, xxxx, … }

 x+ means one or more occurrence of x.

i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

 x? means at most one occurrence of x

i.e., it can generate either {x} or {e}.

[a-z] is all lower-case alphabets of English language.

[A-Z] is all upper-case alphabets of English language.

[0-9] is all natural digits used in mathematics.

Representing occurrence of symbols using regular expressions

letter = [a – z] or [A – Z]

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9]

sign = [+ | -]

Representing language tokens using regular expressions

Decimal = (sign)?(digit)+

Identifier = (letter)(letter | digit)*

The only problem left with the lexical analyzer is how to verify the validity of a regular

expression used in specifying the patterns of keywords of a language. A well-accepted solution is

to use finite automata for verification.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 11

Finite Automata

Finite automata is a state machine that takes a string of symbols as input and changes its state

accordingly. Finite automata is a recognizer for regular expressions. When a regular expression

string is fed into finite automata, it changes its state for each literal. If the input string is

successfully processed and the automata reaches its final state, it is accepted, i.e., the string just

fed was said to be a valid token of the language in hand.

The mathematical model of finite automata consists of:

 Finite set of states (Q)

 Finite set of input symbols (Σ)

 One Start state (q0)

 Set of final states (qf)

 Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ), Q ×

Σ ➔ Q

Finite Automata Construction

Let L(r) be a regular language recognized by some finite automata (FA).

 States : States of FA are represented by circles. State names are written inside circles.

 Start state : The state from where the automata starts, is known as the start state. Start

state has an arrow pointed towards it.

 Intermediate states : All intermediate states have at least two arrows; one pointing to

and another pointing out from them.

 Final state : If the input string is successfully parsed, the automata is expected to be in

this state. Final state is represented by double circles. It may have any odd number of

arrows pointing to it and even number of arrows pointing out from it. The number of odd

arrows are one greater than even, i.e. odd = even+1.

 Transition : The transition from one state to another state happens when a desired

symbol in the input is found. Upon transition, automata can either move to the next state

or stay in the same state. Movement from one state to another is shown as a directed

arrow, where the arrows points to the destination state. If automata stays on the same

state, an arrow pointing from a state to itself is drawn.

Example : We assume FA accepts any three digit binary value ending in digit 1. FA = {Q(q0, qf),

Σ(0,1), q0, qf, δ}

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 12

Syntax Analysis

Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall learn the

basic concepts used in the construction of a parser.

We have seen that a lexical analyzer can identify tokens with the help of regular expressions and

pattern rules. But a lexical analyzer cannot check the syntax of a given sentence due to the

limitations of the regular expressions. Regular expressions cannot check balancing tokens, such

as parenthesis. Therefore, this phase uses context-free grammar (CFG), which is recognized by

push-down automata.

CFG, on the other hand, is a superset of Regular Grammar, as depicted below:

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 13

It implies that every Regular Grammar is also context-free, but there exists some problems,

which are beyond the scope of Regular Grammar. CFG is a helpful tool in describing the syntax

of programming languages.

Context-Free Grammar

In this section, we will first see the definition of context-free grammar and introduce

terminologies used in parsing technology.

A context-free grammar has four components:

 A set of non-terminals (V). Non-terminals are syntactic variables that denote sets of

strings. The non-terminals define sets of strings that help define the language generated

by the grammar.

 A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols from

which strings are formed.

 A set of productions (P). The productions of a grammar specify the manner in which the

terminals and non-terminals can be combined to form strings. Each production consists of

a non-terminal called the left side of the production, an arrow, and a sequence of tokens

and/or on- terminals, called the right side of the production.

 One of the non-terminals is designated as the start symbol (S); from where the production

begins.

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the

start symbol) by the right side of a production, for that non-terminal.

Example

We take the problem of palindrome language, which cannot be described by means of Regular

Expression. That is, L = { w | w = wR } is not a regular language. But it can be described by

means of CFG, as illustrated below:

G = (V, Σ, P, S)

Where:

V = { Q, Z, N }

Σ = { 0, 1 }

P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 }
S = { Q }

This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101, 11111,

etc.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 14

Syntax Analyzers

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token streams.

The parser analyzes the source code (token stream) against the production rules to detect any

errors in the code. The output of this phase is a parse tree.

This way, the parser accomplishes two tasks, i.e., parsing the code, looking for errors and

generating a parse tree as the output of the phase.

Parsers are expected to parse the whole code even if some errors exist in the program. Parsers

use error recovering strategies, which we will learn later in this chapter.

Derivation

A derivation is basically a sequence of production rules, in order to get the input string. During

parsing, we take two decisions for some sentential form of input:

 Deciding the non-terminal which is to be replaced.
 Deciding the production rule, by which, the non-terminal will be replaced.

To decide which non-terminal to be replaced with production rule, we can have two options.

Left-most Derivation

If the sentential form of an input is scanned and replaced from left to right, it is called left-most

derivation. The sentential form derived by the left-most derivation is called the left-sentential

form.

Right-most Derivation

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 15

If we scan and replace the input with production rules, from right to left, it is known as right-

most derivation. The sentential form derived from the right-most derivation is called the right-

sentential form.

Example

Production rules:

E → E + E

E → E * E

E → id

Input string: id + id * id

The left-most derivation is:

E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

Notice that the left-most side non-terminal is always processed first.

The right-most derivation is:

E → E + E

E → E + E * E

E → E + E * id

E → E + id * id

E → id + id * id

Parse Tree

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are

derived from the start symbol. The start symbol of the derivation becomes the root of the parse

tree. Let us see this by an example from the last topic.

We take the left-most derivation of a + b * c

The left-most derivation is:

E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 16

E → id + id * id

Step 1:

E → E * E

Step 2:

E → E + E * E

Step 3:

E → id + E * E

Step 4:

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 17

E → id + id * E

Step 5:

E → id + id * id

In a parse tree:

 All leaf nodes are terminals.
 All interior nodes are non-terminals.

 In-order traversal gives original input string.

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is traversed

first, therefore the operator in that sub-tree gets precedence over the operator which is in the

parent nodes.

Ambiguity

A grammar G is said to be ambiguous if it has more than one parse tree (left or right derivation)

for at least one string.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 18

Example

E → E + E

E → E – E

E → id

For the string id + id – id, the above grammar generates two parse trees:

The language generated by an ambiguous grammar is said to be inherently ambiguous.

Ambiguity in grammar is not good for a compiler construction. No method can detect and

remove ambiguity automatically, but it can be removed by either re-writing the whole grammar

without ambiguity, or by setting and following associativity and precedence constraints.

Associativity

If an operand has operators on both sides, the side on which the operator takes this operand is

decided by the associativity of those operators. If the operation is left-associative, then the

operand will be taken by the left operator or if the operation is right-associative, the right

operator will take the operand.

Example

Operations such as Addition, Multiplication, Subtraction, and Division are left associative. If the

expression contains:

id op id op id

it will be evaluated as:

(id op id) op id

For example, (id + id) + id

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 19

Operations like Exponentiation are right associative, i.e., the order of evaluation in the same

expression will be:

id op (id op id)

For example, id ^ (id ^ id)

Precedence

If two different operators share a common operand, the precedence of operators decides which

will take the operand. That is, 2+3*4 can have two different parse trees, one corresponding to

(2+3)*4 and another corresponding to 2+(3*4). By setting precedence among operators, this

problem can be easily removed. As in the previous example, mathematically * (multiplication)

has precedence over + (addition), so the expression 2+3*4 will always be interpreted as:

2 + (3 * 4)

These methods decrease the chances of ambiguity in a language or its grammar.

Left Recursion

A grammar becomes left-recursive if it has any non-terminal ‘A’ whose derivation contains ‘A’

itself as the left-most symbol. Left-recursive grammar is considered to be a problematic situation

for top-down parsers. Top-down parsers start parsing from the Start symbol, which in itself is

non-terminal. So, when the parser encounters the same non-terminal in its derivation, it becomes

hard for it to judge when to stop parsing the left non-terminal and it goes into an infinite loop.

Example:

(1) A => Aα | β

(2) S => Aα | β

 A => Sd

(1) is an example of immediate left recursion, where A is any non-terminal symbol and α

represents a string of non-terminals.

(2) is an example of indirect-left recursion.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 20

A top-down parser will first parse the A, which in-turn will yield a string consisting of A itself

and the parser may go into a loop forever.

Removal of Left Recursion

One way to remove left recursion is to use the following technique:

The production

A => Aα | β

is converted into following productions

A => βA'

A'=> αA' | ε

This does not impact the strings derived from the grammar, but it removes immediate left

recursion.

Second method is to use the following algorithm, which should eliminate all direct and indirect

left recursions.

Example

The production set

S => Aα | β

A => Sd

after applying the above algorithm, should become

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 21

S => Aα | β

A => Aαd | βd

and then, remove immediate left recursion using the first technique.

A => βdA'

A' => αdA' | ε

Now none of the production has either direct or indirect left recursion.

Left Factoring

If more than one grammar production rules has a common prefix string, then the top-down parser

cannot make a choice as to which of the production it should take to parse the string in hand.

Example

If a top-down parser encounters a production like

A ⟹ αβ | α𝜸 | …

Then it cannot determine which production to follow to parse the string as both productions are

starting from the same terminal (or non-terminal). To remove this confusion, we use a technique

called left factoring.

Left factoring transforms the grammar to make it useful for top-down parsers. In this technique,

we make one production for each common prefixes and the rest of the derivation is added by

new productions.

Example

The above productions can be written as

A => αA'

A'=> β | 𝜸 | …

Now the parser has only one production per prefix which makes it easier to take decisions.

First and Follow Sets

An important part of parser table construction is to create first and follow sets. These sets can

provide the actual position of any terminal in the derivation. This is done to create the parsing

table where the decision of replacing T[A, t] = α with some production rule.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 22

First Set

This set is created to know what terminal symbol is derived in the first position by a non-

terminal. For example,

α → t β

That is α derives t (terminal) in the very first position. So, t ∈ FIRST(α).

Algorithm for calculating First set

Look at the definition of FIRST(α) set:

 if α is a terminal, then FIRST(α) = { α }.
 if α is a non-terminal and α → ℇ is a production, then FIRST(α) = { ℇ }.
 if α is a non-terminal and α → 𝜸1 𝜸2 𝜸3 … 𝜸n and any FIRST(𝜸) contains t then t is in FIRST(α).

First set can be seen as:

Follow Set

Likewise, we calculate what terminal symbol immediately follows a non-terminal α in

production rules. We do not consider what the non-terminal can generate but instead, we see

what would be the next terminal symbol that follows the productions of a non-terminal.

Algorithm for calculating Follow set:

 if α is a start symbol, then FOLLOW() = $

 if α is a non-terminal and has a production α → AB, then FIRST(B) is in FOLLOW(A)

except ℇ.

 if α is a non-terminal and has a production α → AB, where B ℇ, then FOLLOW(A) is in

FOLLOW(α).

Follow set can be seen as: FOLLOW(α) = { t | S *αt*}

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 23

Limitations of Syntax Analyzers

Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers. Lexical

analyzers are responsible for the validity of a token supplied by the syntax analyzer. Syntax

analyzers have the following drawbacks -

 it cannot determine if a token is valid,

 it cannot determine if a token is declared before it is being used,

 it cannot determine if a token is initialized before it is being used,

 it cannot determine if an operation performed on a token type is valid or not.

These tasks are accomplished by the semantic analyzer, which we shall study in Semantic

Analysis.

Types of Parsing

Syntax analyzers follow production rules defined by means of context-free grammar. The way

the production rules are implemented (derivation) divides parsing into two types : top-down

parsing and bottom-up parsing.

Top-down Parsing

When the parser starts constructing the parse tree from the start symbol and then tries to

transform the start symbol to the input, it is called top-down parsing.

 Recursive descent parsing : It is a common form of top-down parsing. It is called

recursive as it uses recursive procedures to process the input. Recursive descent parsing

suffers from backtracking.

 Backtracking : It means, if one derivation of a production fails, the syntax analyzer

restarts the process using different rules of same production. This technique may process

the input string more than once to determine the right production.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 24

Bottom-up Parsing

As the name suggests, bottom-up parsing starts with the input symbols and tries to construct the

parse tree up to the start symbol.

Example:

Input string : a + b * c

Production rules:

S → E

E → E + T

E → E * T

E → T

T → id

Let us start bottom-up parsing

a + b * c

Read the input and check if any production matches with the input:

a + b * c

T + b * c

E + b * c

E + T * c

E * c

E * T

E

S

Top-Down Parser

We have learnt in the last chapter that the top-down parsing technique parses the input, and starts

constructing a parse tree from the root node gradually moving down to the leaf nodes. The types

of top-down parsing are depicted below:

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 25

Recursive Descent Parsing

Recursive descent is a top-down parsing technique that constructs the parse tree from the top and

the input is read from left to right. It uses procedures for every terminal and non-terminal entity.

This parsing technique recursively parses the input to make a parse tree, which may or may not

require back-tracking. But the grammar associated with it (if not left factored) cannot avoid

back-tracking. A form of recursive-descent parsing that does not require any back-tracking is

known as predictive parsing.

This parsing technique is regarded recursive as it uses context-free grammar which is recursive

in nature.

Back-tracking

Top- down parsers start from the root node (start symbol) and match the input string against the

production rules to replace them (if matched). To understand this, take the following example of

CFG:

S → rXd | rZd

X → oa | ea

Z → ai

For an input string: read, a top-down parser, will behave like this:

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 26

It will start with S from the production rules and will match its yield to the left-most letter of the

input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the top-down parser

advances to the next input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and checks

its production from the left (X → oa). It does not match with the next input symbol. So the top-

down parser backtracks to obtain the next production rule of X, (X → ea).

Now the parser matches all the input letters in an ordered manner. The string is accepted.

Predictive Parser

Predictive parser is a recursive descent parser, which has the capability to predict which

production is to be used to replace the input string. The predictive parser does not suffer from

backtracking.

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next

input symbols. To make the parser back-tracking free, the predictive parser puts some constraints

on the grammar and accepts only a class of grammar known as LL(k) grammar.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 27

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse tree.

Both the stack and the input contains an end symbol $ to denote that the stack is empty and the

input is consumed. The parser refers to the parsing table to take any decision on the input and

stack element combination.

In recursive descent parsing, the parser may have more than one production to choose from for a

single instance of input, whereas in predictive parser, each step has at most one production to

choose. There might be instances where there is no production matching the input string, making

the parsing procedure to fail.

LL Parser

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with

some restrictions to get the simplified version, in order to achieve easy implementation. LL

grammar can be implemented by means of both algorithms namely, recursive-descent or table-

driven.

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the

second L in LL(k) stands for left-most derivation and k itself represents the number of look

aheads. Generally k = 1, so LL(k) may also be written as LL(1).

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 28

LL Parsing Algorithm

We may stick to deterministic LL(1) for parser explanation, as the size of table grows

exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually, it is

not LL(k), for any given k.

A grammar G is LL(1) if A → α | β are two distinct productions of G:

 for no terminal, both α and β derive strings beginning with a.

 at most one of α and β can derive empty string.

 if β → t, then α does not derive any string beginning with a terminal in FOLLOW(A).

Bottom-Up Parser

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it

reaches the root node. Here, we start from a sentence and then apply production rules in reverse

manner in order to reach the start symbol. The image given below depicts the bottom-up parsers

available.

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 29

Shift-Reduce Parsing

Shift-reduce parsing uses two unique steps for bottom-up parsing. These steps are known as

shift-step and reduce-step.

 Shift step: The shift step refers to the advancement of the input pointer to the next input

symbol, which is called the shifted symbol. This symbol is pushed onto the stack. The

shifted symbol is treated as a single node of the parse tree.

 Reduce step : When the parser finds a complete grammar rule (RHS) and replaces it to

(LHS), it is known as reduce-step. This occurs when the top of the stack contains a

handle. To reduce, a POP function is performed on the stack which pops off the handle

and replaces it with LHS non-terminal symbol.

LR Parser

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of context-

free grammar which makes it the most efficient syntax analysis technique. LR parsers are also

known as LR(k) parsers, where L stands for left-to-right scanning of the input stream; R stands

for the construction of right-most derivation in reverse, and k denotes the number of lookahead

symbols to make decisions.

There are three widely used algorithms available for constructing an LR parser:

 SLR(1) – Simple LR Parser:

o Works on smallest class of grammar

o Few number of states, hence very small table

o Simple and fast construction

 LR(1) – LR Parser:

o Works on complete set of LR(1) Grammar

o Generates large table and large number of states

o Slow construction

 LALR(1) – Look-Ahead LR Parser:

o Works on intermediate size of grammar

o Number of states are same as in SLR(1)

TGPCET/CSE

Tulsiramji Gaikwad-Patil College of Engineering and Technology

Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Computer Science & Engineering

Prof.Rajesh Babu Lp Notes Page 30

 LL vs. LR

LL LR

Does a leftmost derivation. Does a rightmost derivation in reverse.

Starts with the root nonterminal on the stack. Ends with the root nonterminal on the stack.

Ends when the stack is empty. Starts with an empty stack.

Uses the stack for designating what is still to

be expected.

Uses the stack for designating what is already

seen.

Builds the parse tree top-down. Builds the parse tree bottom-up.

Continuously pops a nonterminal off the stack,

and pushes the corresponding right hand side.

Tries to recognize a right hand side on the stack,

pops it, and pushes the corresponding

nonterminal.

Expands the non-terminals. Reduces the non-terminals.

Reads the terminals when it pops one off the

stack.

Reads the terminals while it pushes them on the

stack.

Pre-order traversal of the parse tree. Post-order traversal of the parse tree.

	Preprocessor
	Interpreter
	Assembler
	Linker
	Loader
	Cross-compiler
	Source-to-source Compiler
	Analysis Phase
	Synthesis Phase
	Phases of Compiler
	 Lexical Analysis
	 Syntax Analysis
	 Semantic Analysis
	 Intermediate Code Generation
	 Code Optimization
	 Code Generation
	 Symbol Table

	Lexical Analysis
	Tokens
	Specifications of Tokens
	Alphabets
	Strings
	Special Symbols
	Language

	Longest Match Rule

	Regular Expressions
	Operations
	Notations
	Precedence and Associativity
	Representing valid tokens of a language in regular expression
	Representing occurrence of symbols using regular expressions
	Representing language tokens using regular expressions

	Finite Automata
	Finite Automata Construction

	Syntax Analysis
	Context-Free Grammar
	Example

	Syntax Analyzers
	Derivation
	Left-most Derivation
	Right-most Derivation

	Parse Tree
	Ambiguity
	Associativity
	Precedence
	Left Recursion
	Removal of Left Recursion

	Left Factoring
	First and Follow Sets
	First Set
	Algorithm for calculating First set

	Follow Set
	Algorithm for calculating Follow set:

	Limitations of Syntax Analyzers

	Types of Parsing
	Top-down Parsing
	Bottom-up Parsing

	Top-Down Parser
	Recursive Descent Parsing
	Back-tracking
	Predictive Parser
	LL Parser
	LL Parsing Algorithm

	Bottom-Up Parser
	Shift-Reduce Parsing
	LR Parser
	 LL vs. LR

