

Elective II-Mobile Computing

UNIT 1

History of Wireless Communication A simplified Reference Model

Session(2019-2020)

Abha Gaikwad - Patil College of

Engineering, Nagpur

1. Explain the structure of communication system with suitable reference model. (S-16,17,W-17,18)

2. Distinguish between Wireless and Wired Network. (W-12,S-18)

3. Write a short note on Antennas. (S-13)

4. Write about the history of mobile communication with the overview of some wireless.

5. What are the difference type of antennas and their uses.

(S-16,17,18,W-17,18)

6. Write a short on multiplexing. (W-13,S-11,....)

7. What are different applications of Wireless Communication? Discuss with their categories.

(W-16,17,S-16)

Early history of wireless communication

- Many people in history used light (modulated) for communication
 - heliographs, flags ("semaphore"), …
 - 150 BC smoke signals for communication; (Polybius, Greece)
 - 1794, optical telegraph (long distance comm. lines), Claude Chappe A
- Here electromagnetic waves are of special importance:
 - 1831 M. Faraday demonstrates electromagnetic induction
 - J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
 - H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1 3

History of wireless communication I

- 1895 Guglielmo Marconi
 - first demonstration of wireless telegraphy (digital!)
 - long wave transmission, high transmission power necessary (> 200kw)
- 1907 Commercial transatlantic connection
 - huge base stations
 (30 100m high antennas)

- 1915 Wireless voice transmission New York San Francisco
- 1920 Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
- Prof 19-26 ochen Schiller, Train-phone on the line Hamburg Berlin
 - wires parallel to the railroad track

History of wireless communication II

- 1928 many TV broadcast trials (across Atlantic, color TV, TV news)
- 1933 Frequency modulation (E. H. Armstrong)

• 1958 A-Netz in Germany

analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers

• 1972 B-Netz in Germany

- analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
- available also in A, NL and LUX, 1979 13000 customer in D
- 1979 NMT at 450MHz (Scandinavian countries)
- 1982 Start of GSM-specification (Groupe Speciale Mobile)
 - goal: pan-European digital mobile phone system with roaming
- 1983 Start of the American AMPS (Advanced Mobile Phone System, analog,

850MHz)

•rof. D1-984hen Schiller, CT-1 standard (Europe) for cordless http://www.jochenschiller.de/ telephones

History of wireless communication III

- 1986 C-Netz in Germany
 - analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage
- 1991 Specification of DECT
 - Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
 - 1880-1900MHz, ~100-500m range, 120 duplex channels,
 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 50 countries
- 1992 Start of GSM (Global system for Mobile Comm.)
 - in D as D1 and D2, fully digital, 900MHz, 124 full duplex channels
 - automatic location, authen., encryption on wireless links, hand-over, cellular
 - roaming in Europe now worldwide in more than 170 countries

– services: data with 9.6kbit/s, FAX, voice, ...multimedia data
 Prof. Dr.-Ing. Jock Treaming transport
 http://www.jochenschiller.de/

MC SS02

16

History of wireless communication IV

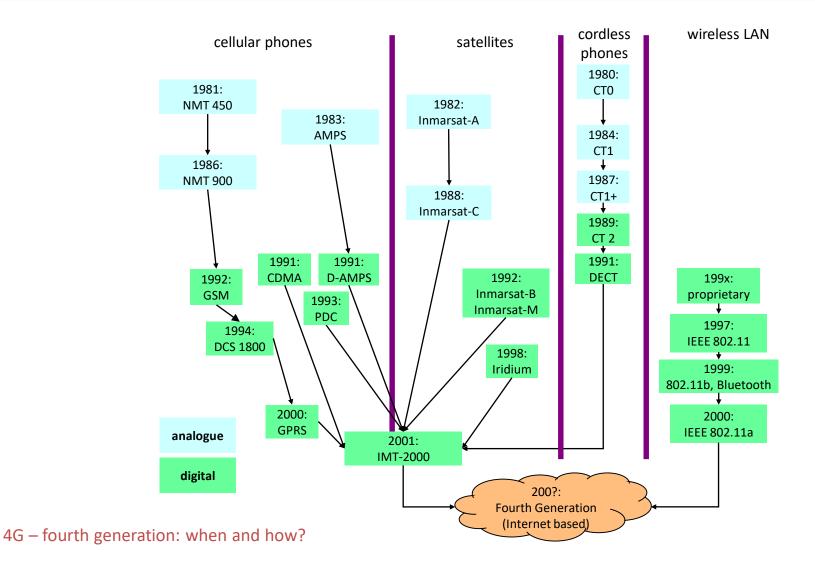
- 1994 E-Netz in Germany
 - GSM with 1800MHz, smaller cells
 - As Eplus in D (1997 98% coverage of the *population*)
- 1996HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s)
- 1997Wireless LAN IEEE802.11
 - IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
 - already many (proprietary) products available in the beginning

• 1998 Specification of GSM successors

- for UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000
- Iridium
 - 66 satellites (+6 spare), 1.6GHz to the mobile phone

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1 7 1998- beginning of Mobile Communication(Satellites with Iridium System)
Satellite: Broadcast distribution medium , can be used with
Broadcasting (Big /Heavy)

Iridium – marked the beginning of small and truly portable mobile satellites telephone including data services...
66 satellites , 1.6 GHz band


History of wireless communication V

- 1999 Standardization of additional wireless LANs
 - IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s
 - Bluetooth for piconets, 2.4Ghz, <1Mbit/s
- Decision about IMT-2000
 - Several "members" of a "family": UMTS, cdma2000, DECT, ...
 - Start of WAP (Wireless Application Protocol) and i-mode
 - First step towards a unified Internet/mobile communication system
 - Access to many services via the mobile phone
- 2000 GSM with higher data rates
 - HSCSD offers up to 57,6kbit/s
 - First GPRS trials with up to 50 kbit/s (packet oriented!)
 - UMTS auctions/beauty contests
 - Hype followed by disillusionment (approx. 50 B\$ payed in Germany for 6 UMTS licences!)
- 2001 Start of 3G systems

Prof. Dr.-Ing. Jochen Schiller. http://www.Camai2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan

MC SS

Wireless systems: overview of the development

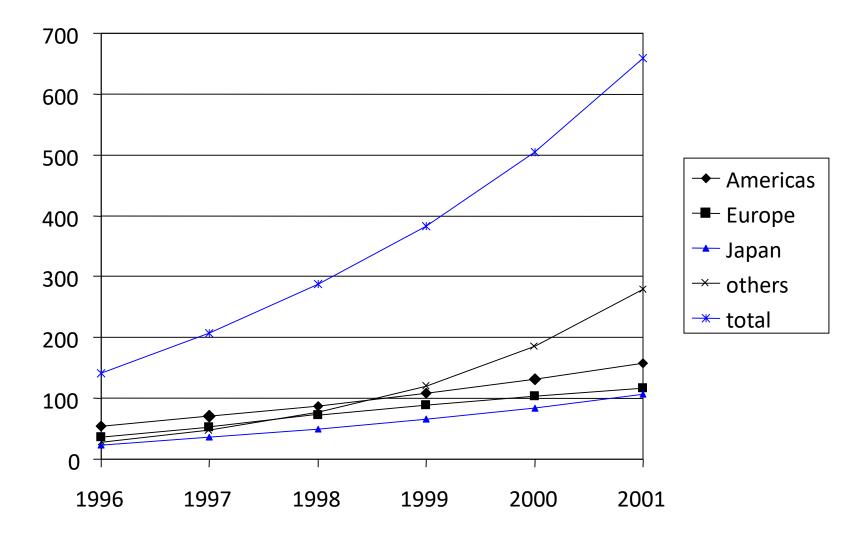
Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1 10

Foundation: ITU-R - Recommendations for IMT-2000

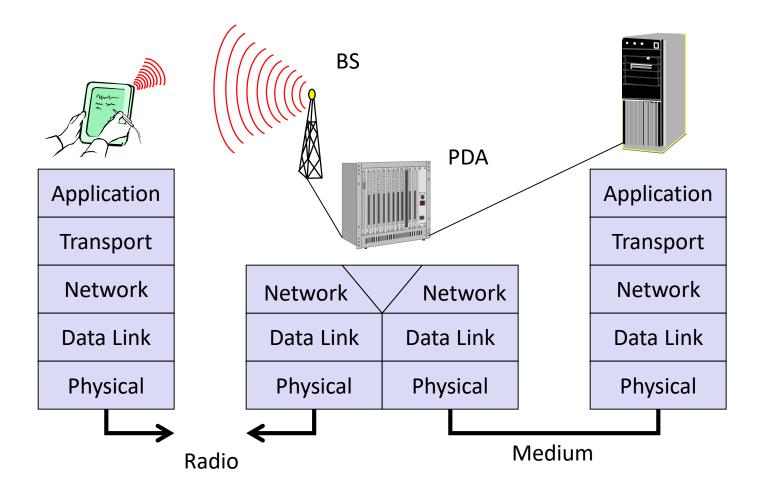
•M.687-2

- IMT-2000 concepts and goals
- •M.816-1
 - framework for services
- •M.817
- IMT-2000 network architectures
 •M.818-1
 - satellites in IMT-2000
- •M.819-2
 - IMT-2000 for developing countries
- •M.1034-1
 - requirements for the radio interface(s)
- •M.1035
 - framework for radio interface(s) and radio sub-system functions
- •M.1036
 - spectrum considerations

- •M.1078
 - security in IMT-2000
- •M.1079
 - speech/voiceband data performance
- •M.1167
 - framework for satellites
- •M.1168
 - framework for management
- •M.1223
 - evaluation of security mechanisms
- •M.1224
 - vocabulary for IMT-2000
- •M.1225


•...

- evaluation of transmission technologies
- •http://www.itu.int/imt a


Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1.11

Worldwide wireless subscribers (old prediction 1998)

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1.12

Simplified Reference Model

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1 13

Base Station: Radio Transceiver Internet networking unit (wireless link with fixed link)

Physical Layer:

Stream of bits into signal Signals back into a bit stream

Frequency selection, generation of carrier frequency, signal detection, modulation of data and encryption

Data

Layer:

Accessing the medium, multiplexing of different data streams, correction of transmission errors, and synchronization

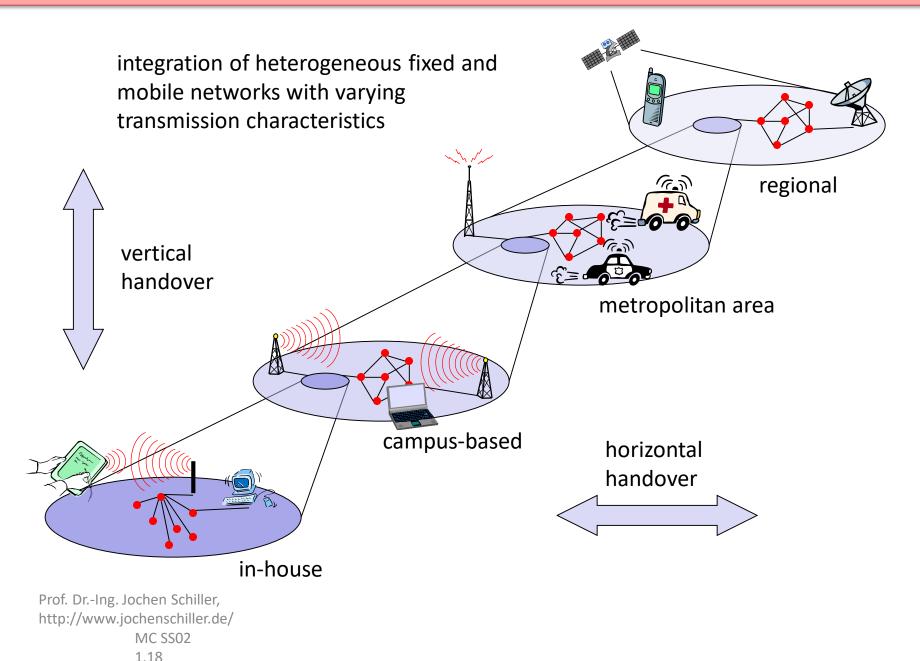
Reliable point to point connection between two devices or point to multi point connection

Network Layer:

Routing of packets through network Addressing, routing , Device location, handover

Transport Layer:

est end to end connection Quality of service, flow and congestion control TCP UDP over wireless link


Application Layer:

Influence of mobile communication to the layer model

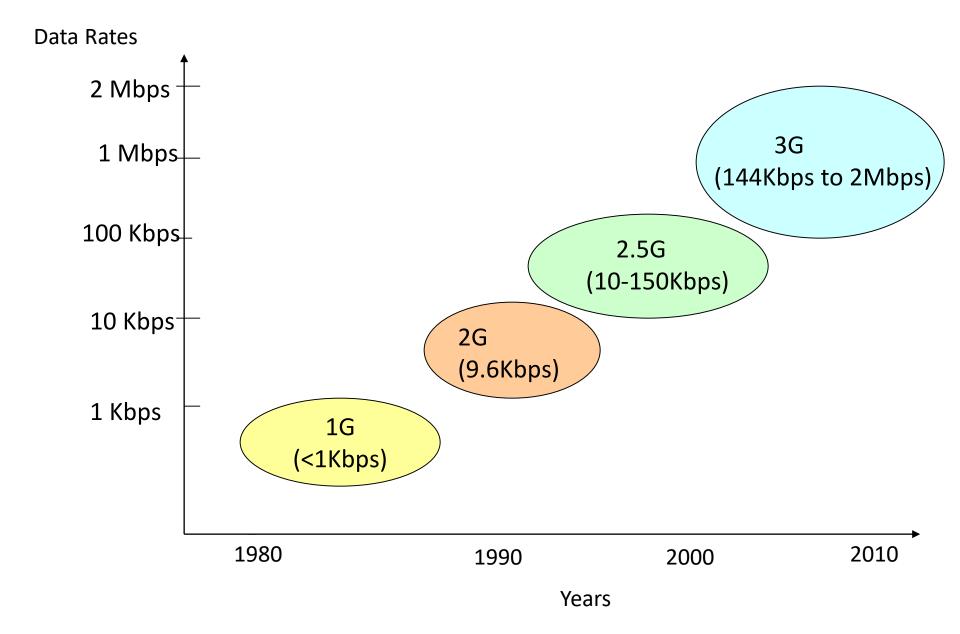
Application layer	 service location new applications, multimedia adaptive applications
Transport layer	congestion and flow controlquality of service
Network layer	 addressing, routing, device location hand-over
Data link layer	 authentication media access multiplexing media access control
Physical layer	 encryption modulation interference attenuation frequency

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 1 17

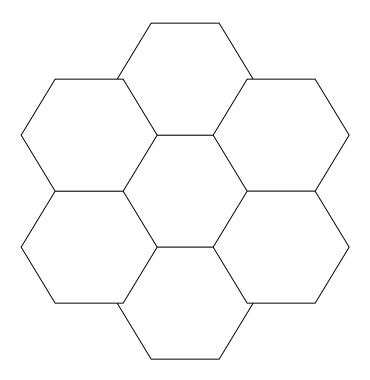
Overlay Networks - the global goal

Wireless networks in comparison to fixed networks

- Higher loss-rates due to interference
 - emissions of, e.g., engines, lightning
- Restrictive regulations of frequencies
 - frequencies have to be coordinated, useful frequencies are almost all occupied
- Low transmission rates
 - local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM
- Higher delays, higher jitter
 - connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems
- Lower security, simpler active attacking
 - radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones
- Always shared medium


– secure access mechanisms important Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

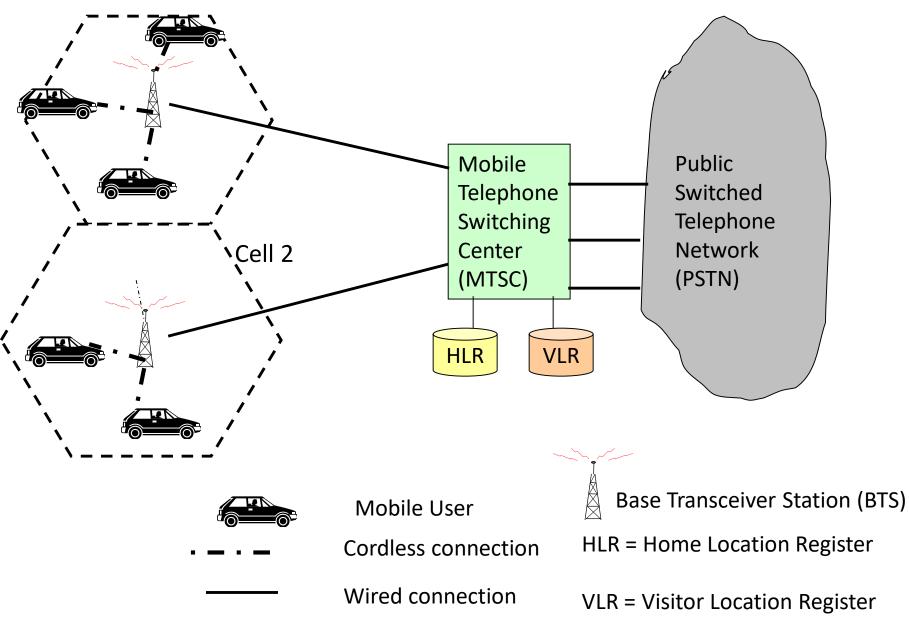
MC SS02


1.19

Overview

"Cell"ular Structure

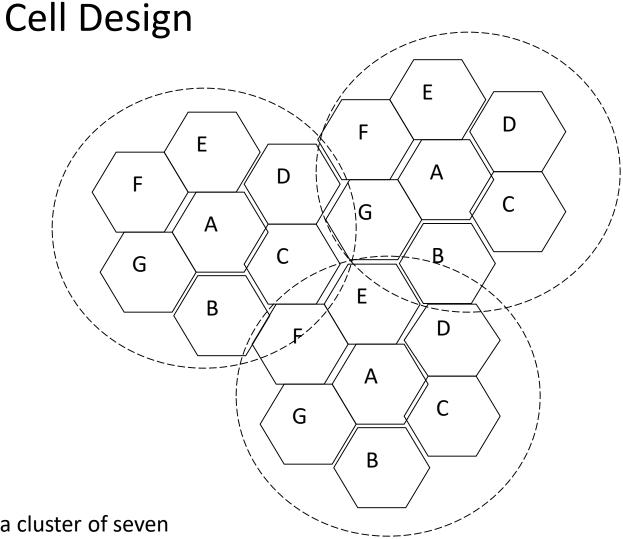
Properties of Cell structure


- Typical Cell sizes
 - some cites few hundred meters
 - country side few tens of kilometers
- Advantages of cell structures:
 - more capacity due to frequency reusage
 - less transmission power needed
 - more robust, tolerate failures
 - deals interference, transmission area locally
- Problems:
 - fixed network needed for the base stations
 - handover (changing from one cell to another) necessary
 - interference with other cells

Cellular networks: From 1G to 3G

- 1G: First generation wireless cellular: Early 1980s
 - Analog transmission, primarily speech: AMPS (Advanced Mobile Phone Systems) and others
- 2G: Second generation wireless cellular: Late 1980s
 - Digital transmission
 - Primarily speech and low bit-rate data (9.6 Kbps)
 - High-tier: GSM, IS-95 (CDMA), etc
 - Low-tier (PCS): Low-cost, low-power, low-mobility e.g. PACS
- 2.5G: 2G evolved to medium rate (< 100kbps) data
- 3G: future Broadband multimedia
 - 144 kbps 384 kbps for high-mobility, high coverage
 - 2 Mbps for low-mobility and low coverage
- Beyond 3G: research in 4G

A Cellular Network



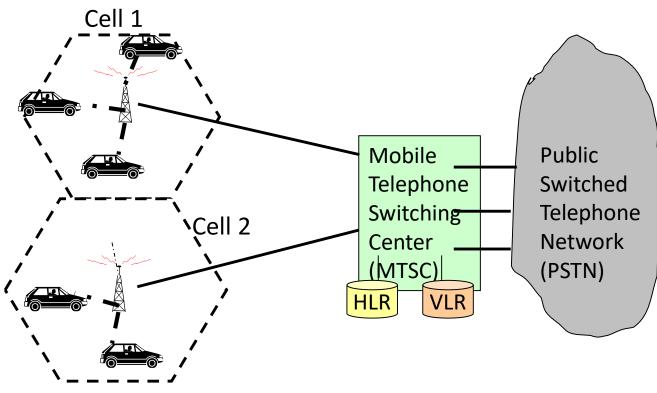
Cell

Basic geographic unit of a cellular system.

Macro Cell: large cells for remote and sparely populated areas

Micro Cell: Densely populated areas. By splitting the existing areas into smaller cells, the available channels are increased as well as the capacity of the cells Selective Cell: The cells should be defined in a such way that they prove their existence. Umbrella Cell: Covers several micro cell.

- •Cells grouped into a cluster of seven
- •Letters indicate frequency use
- •For each frequency, a buffer of two cells is used before reuse
- •To add more users, smaller cells (microcells) are used
- Frequencies may not need to be different in CDMA (soft handoff)


Overview of Location Services

- Cell-id based location.
 - assigned an id of the cell that you are in.
 - cell-id is stored in a database.
 - As you move from one cell to another, you are assigned a different cell-id and the location database is updated.

most commonly used in cellular networks. (HLR, VLR)

- Neighborhood polling: Connected mobile units only move to adjacent cells
- Angle of arrival (AOA). the angle at which radio waves from your device "attack" an antenna is used to calculate the location of the device.
- Time taken. In this case, the time taken between the device and the antenna is used to calculate the location of the device.
- Network assisted Global Positioning System (GPS). a GPS chip is installed inside a phone and thus the location of the user is tracked.

Cellular System

Handoffs (typically 30 mseconds):

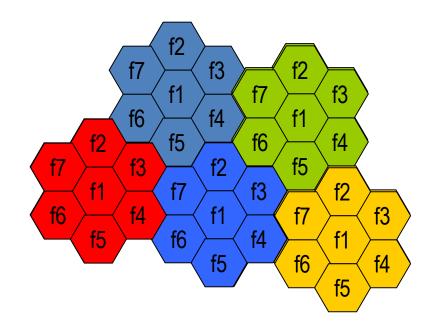
1. At any time, mobile station (MS) is in one cell and under the control of a BS

- 2. When a MS leaves a cell, BS notices weak signal
- 3. BS asks surrounding BSs if they are getting a stronger signal
- 4. BS transfers ownership to one with strongest signal
- 5. MTSO assigns new channel to the MS and notifies MS of new boss

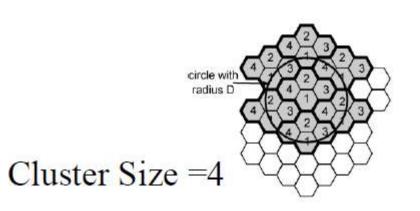

Frequency Reuse

The concept of frequency reuse is based on assigning to each cell a group of radio channels used within a small geographic area

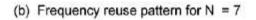
Cells are assigned a group of channels that is completely different from neighbouring cells The coverage area of cells is called the footprint and is limited by a boundary so that the same group of channels can be used in cells that are far enough apart.

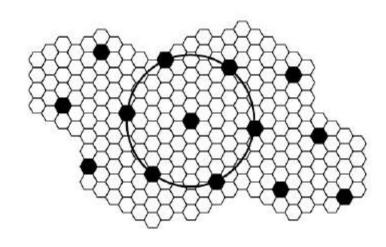

Frequency Reuse

 Cells with the same number have the same set of frequencies


Frequency Reuse

Frequency Reuse using 7 frequencies allocations




Each cell is generally 4 to 8 miles in diameter with a lower limit around 2 miles.

Cellular Frequency Reuse

(a) Frequency reuse pattern for N = 4

Cluster Size =19

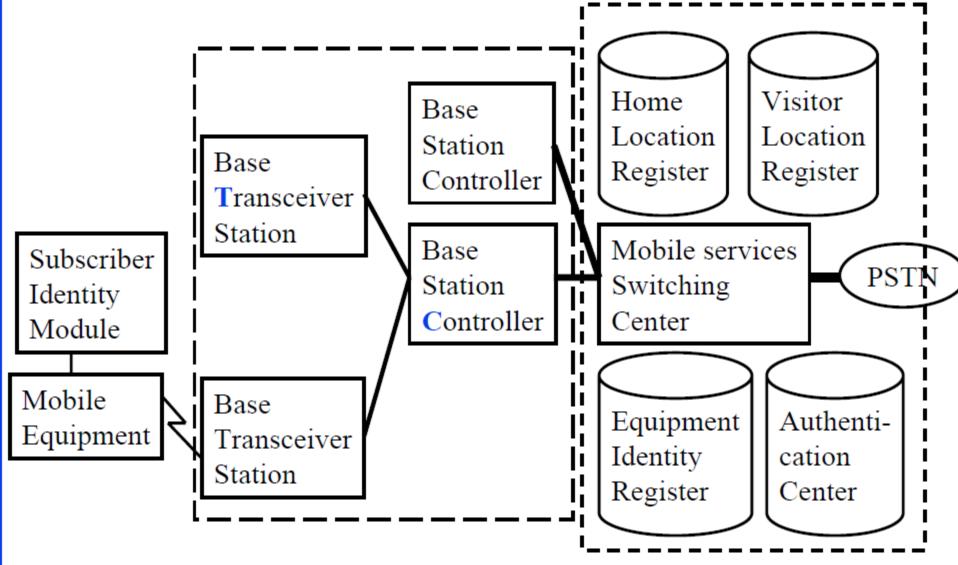
Cluster Size =7

Cellular Network Organization

- Cell design (around 10 mile radius)
 - Served by base station consisting of transmitter, receiver, and control unit
 - Base station (BS) antenna is placed in high places (churches, high rise buildings) -
 - Operators pay around \$500 per month for BS
 - 10 to 50 frequencies assigned to each cell
 - Cells set up such that antennas of all neighbors are equidistant (hexagonal pattern)
- In North America, two 25-MHz bands allocated to AMPS
 - One for transmission from base to mobile unit
 - One for transmission from mobile unit to base

Approaches to Increase Capacity

- Adding/reassigning channels some channels are not used
- Frequency borrowing frequencies are taken from adjacent cells by congested cells
- Cell splitting cells in areas of high usage can be split into smaller cells
- Microcells antennas move to buildings, hills, and lamp posts


Security Issues with 1G

- Analog cellular phones are insecure
- Anyone with an all band radio receiver can listen in (many scandals)
- Theft of airtime:
 - all band radio receiver connected to a computer
 - can record 32 bit serial number and phone number of subscribers when calling
 - can collect a large database by driving around
 - Thieves go into business reprogram stolen phones and resell them

Second Generation Cellular

- Based on digital transmission
- Different approaches in US and Europe
- US: divergence
 - Only one player (AMPS) in 1G
 - Became several players in 2G due to competition
 - Survivors
 - IS-54 and IS-135: backward compatible with AMPS frequency allocation (dual mode analog and digital)
 - IS-95: uses spread spectrum
- Europe: Convergence
 - 5 incompatible 1G systems (no clear winner)
 - European PTT development of GSM (uses new frequency and completely digital communication)

Cellular Architecture

Mobile Station Base Station Subsystem Network Subsystem

Cellular Architecture (Cont)

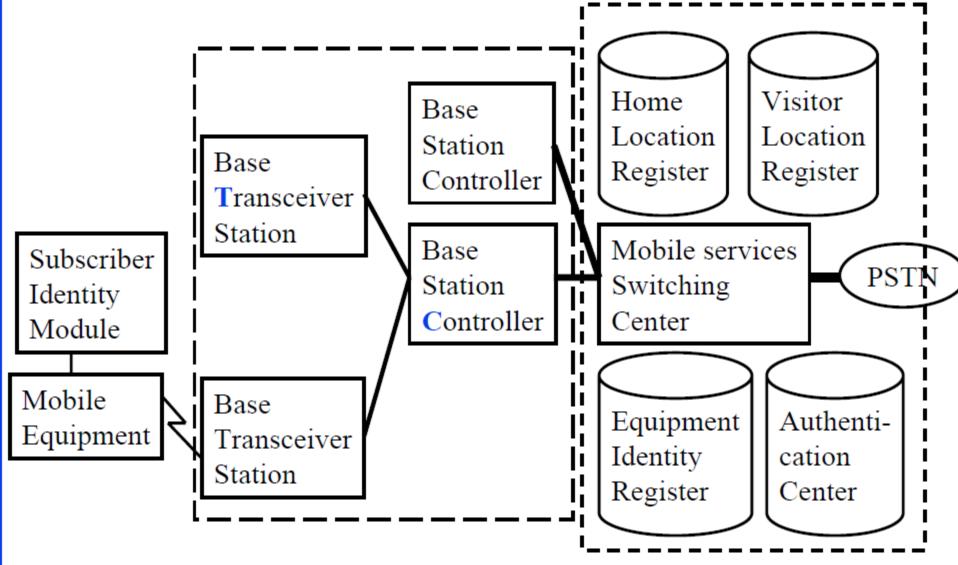
- Base station controller (BSC) and Base transceiver station (BTS)
- □ One BTS per cell.
- □ One BSC can control multiple BTS.
 - > Allocates radio channels among BTSs.
 - > Manages call handoffs between BTSs.
 - Controls handset power levels
- Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.

Cellular Architecture (Cont)

- Home Location Register (HLR) and Visitor Location Register (VLR) provide call routing and roaming
- VLR+HLR+MSC functions are generally in one equipment
- Equipment Identity Register (EIR) contains a list of all valid mobiles.
- Authentication Center (AuC) stores the secret keys of all SIM cards.
- Each handset has a International Mobile Equipment Identity (IMEI) number.

Advantages of Digital Communications for Wireless

- Voice, data and fax can be integrated into a single system
- Better compression can lead to better channel utilization
- Error correction codes can be used for better quality
- Sophisticated encryption can be used


Differences Between First and Second Generation Systems

- Digital traffic channels first-generation systems are almost purely analog; second-generation systems are digital
- Encryption all second generation systems provide encryption to prevent eavesdropping
- Error detection and correction second-generation digital traffic allows for detection and correction, giving clear voice reception
- Channel access second-generation systems allow channels to be dynamically shared by a number of users

Integrating Data Over Cellular

- Direct access to digital channel
- Voice and data using one handset
- PCS 1900 (GSM-1900)
 - 9.6 kbps circuit switched data
 - 14.4 kbps under definition
 - Packet mode specified
 - Short message service
- IS-95-based CDMA
 - 13 kbps circuit switched data
 - Packet mode specified
 - Short message service

Cellular Architecture

Mobile Station Base Station Subsystem Network Subsystem