
Tulsiramji Gaikwad-Patil College of Engineering & Technology, Nagpur
Department of CSE

8th Sem
Distributed Operating System (BECSE406T)

Models
The different models that are used for building distributed computing systems can be
classified as :

1. Minicomputer Model
2. Workstation Model
3. Workstation Server Model
4. Processor Pool Model and
5. Hybrid Model

1.Minicomputer Model
The minicomputer model is a simple extension of the centralized time-sharing system. It
consists of a many minicomputers interconnected by a communication network. Each
minicomputer has multiple users logged on to it simultaneously. Many interactive
terminals are connected to each minicomputer. Each user can have remote access to other
minicomputers. The network allows a user to access remote resources that are available on
some other machines in the network of distributed system. The minicomputer model was
suitable when resource sharing with remote users is desired. Example : Early ARPA net.
2.Workstation Model
This model consists of many workstations interconnected by a communication network. In
Some applications it is required to have several workstations located at different locations
and communicate with each other with the help of communication network. Where each
workstation is has its own disk & serves as a single-user computer.
This model was designed to utilize the power of lightly loaded or idle workstations. For
some amount of time a significant proportion of the workstations are idle. If the idle
workstations are not utilized properly it results in the waste of large amounts of CPU time.
Therefore, the idea of the workstation model is to interconnect all these workstations by a
high-speed LAN so that idle workstations may be used to process jobs of users who are
logged onto other workstations & do not have sufficient processing power at their own
workstations to get their jobs processed efficiently. Example:Sprite system by Xerox
PARC.
3.Workstation–Server Model
In the workstation model there is a network of personal workstations. Where each
workstation has its own disk & a local file system (Diskful Workstation).
A workstation with its own local disk is usually called a diskful workstation & a
workstation without a local disk is called a diskless workstation. Diskless workstations
have become more popular in network environments than diskful workstations, making the
workstation-server model more popular than the previous model for building distributed
computing systems.
A distributed computing system based on the workstation-server model consists of a few
minicomputers & multiple workstations interconnected by a communication network. In
this model, a user logs onto a workstation called his or her home workstation. Special

requests for services provided by special servers are sent to a server providing that type of
service that performs the user's requested activity.
Therefore, in this model, the user's processes need not migrated to the server machines for
getting the work done by those machines. Example:The V-System.
4.Processor–Pool Model:
The processor-pool model is based on the assumption that most of the time a user needs
limited amount of computing power but sometimes he may need a very large amount of
processing power for a short period. A single processor could not be enough to perform the
task.
Therefore, here in processor-pool model the processors are pooled together. The power of
multiple processors can be utilized as and when its required by the user.
The pool of processors consists of a large number of microcomputers & minicomputers
attached to the network.Each processor in the pool has its own memory to load & run a
system program or an application program of the distributed computing system.
In this model no home machine is present & the user does not log onto any machine. This
model has better utilization of processing power & greater flexibility.
Example:Amoeba & the Cambridge Distributed Computing System.
5.Hybrid Model: The workstation-server model has a large number of computer users
only performing simple interactive tasks &-executing small programs.
In a working environment that has groups of users who often perform jobs needing
massive computation, the processor-pool model is more attractive & suitable.
The Advantages of workstation-server & processor-pool models can be obtained by
implementing the hybrid model for a distributed system.
The processors in the pool can be allocated dynamically for computations that are too large
or require several computers for execution.
The hybrid model gives guaranteed response to interactive jobs allowing them to be more
processed in local workstations of the users.

Issues in DOS
1. Openness
The openness of a computer system is the characteristic that determines whether the
system can be extended and re-implemented in various ways.The openness of distributed
systems is determined primarily by the degree to which new resource-sharing services can
be added and be made available for use by a variety of client programs.
2. Security
Many of the information resources that are made available and maintained in distributed
systems have a high intrinsic value to their users.Their security is therefore of considerable
importance. Security for information resources has three components: confidentiality,
integrity, and availability.
3. Scalability
Distributed systems operate effectively and efficiently at many different scales, ranging
from a small intranet to the Internet. A system is described as scalable if it will remain
effective when there is a significant increase in the number of resources and the number of
users.
4. Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs
may produce incorrect results or may stop before they have completed the intended
computation. Failures in a distributed system are partial – that is, some components fail
while others continue to function. Therefore the handling of failures is particularly
difficult.
5. Concurrency
Both services and applications provide resources that can be shared by clients in a
distributed system. There is therefore a possibility that several clients will attempt to
access a shared resource at the same time. Object that represents a shared resource in a
distributed system must be responsible for ensuring that it operates correctly in a
concurrent environment. This applies not only to servers but also to objects in applications.
Therefore any programmer who takes an implementation of an object that was not
intended for use in a distributed system must do whatever is necessary to make it safe in a
concurrent environment.
6. Transparency
Transparency can be achieved at two different levels. Easiest to do is to hide the
distribution from the users. The concept of transparency can be applied to several aspects
of a distributed system.
a) Location transparency: The users cannot tell where resources are located
b) Migration transparency: Resources can move at will without changing their names
c) Replication transparency: The users cannot tell how many copies exist.
d) Concurrency transparency: Multiple users can share resources automatically.
e) Parallelism transparency: Activities can happen in parallel without users knowing.
7. Quality of service
Once users are provided with the functionality that they require of a service, such as the
file service in a distributed system, we can go on to ask about the quality of the service
provided. The main nonfunctional properties of systems that affect the quality of the
service experienced by clients and users are reliability, security and performance.
Adaptability to meet changing system configurations and resource availability has been
recognized as a further important aspect of service quality.
8. Reliability
One of the original goals of building distributed systems was to make them more reliable
than single-processor systems. The idea is that if a machine goes down, some other
machine takes over the job. A highly reliable system must be highly available, but that is
not enough. Data entrusted to the system must not be lost or garbled in any way, and if
files are stored redundantly on multiple servers, all the copies must be kept consistent. In
general, the more copies that are kept, the better the availability, but the greater the chance
that they will be inconsistent, especially if updates are frequent.
9. Performance
Always the hidden data in the background is the issue of performance. Building a
transparent, flexible, reliable distributed system, more important lies in its performance. In
particular, when running a particular application on a distributed system, it should not be
appreciably worse than running the same application on a single processor. Unfortunately,
achieving this is easier said than done.

Lamport-Vector Logical Clocks

The concept of time is fundamental to our way of thinking about ordering of events in a
system. Since physical clocks in a distributed system can drift among each other, it will be
very difficult to enforce total ordering among all events in a distributed system across a set
of processes.
As a first step, let’s try to move away from a physical clock for measuring order in a
distributed system. Instead let’s try to create a logical clock that assigns an unique id to
events in a distributed system, such that it captures the casual order among events in a
distributed system. Let’s define the distributed system as set of processes. Each process
execution is modeled as a sequence of events. The processes communicate with each other
via messages.
The happens before relation (<) is defined as follows.
1. If a, b are events in the same process, if a occurs before b, then a < b
2. if a denotes sending of message in process-a and b denotes receipt of message in
process-b then a < b
3. The relation is transitive, a < b and b < c => a < c
To capture the happens before relation, Lamport introduced a form of clock by name
Lamport clocks.
Lamport clocks are defined as follows.
1. It’s a counter within a single process that increments from 1. Events within a process is
assigned an unique id based on the counter value. Thus all compute and messaging events
within a process are assigned an unique value
2. When sending a message from process-a, we set C(a) = C(a) + 1, then pass on C(a) as
part of the message.
3. On recipient of message in process-b we set C(b) = max(C(b) + 1, C(a))

Lamport clocks can guarantee that if a < b then C(a) < C(b). However it can’t guarantee,
that if C(a) < C(b) then event a happened before b.
A casuality relation states that if an event e1 possibly influences the generation of event e2,
then e1 < e2. What’s better way to establish such a relation than relying on message passing
among the processes. Message passi
on the communication pattern. For example if a process receives a message as event A,
processes the message as B and sends out a new message to another process as event C then
it’s assumed event A influenced the generation of event C and hence A & C are casually
related, A < C.
Then comes the vector clocks into this picture.

In a system with N processes, each process keeps a vector timestamp TS[N]

Lamport clocks can guarantee that if a < b then C(a) < C(b). However it can’t guarantee,
then event a happened before b.

A casuality relation states that if an event e1 possibly influences the generation of event e2,
then e1 < e2. What’s better way to establish such a relation than relying on message passing
among the processes. Message passing establishes a happens before order on events based
on the communication pattern. For example if a process receives a message as event A,
processes the message as B and sends out a new message to another process as event C then

enced the generation of event C and hence A & C are casually

Then comes the vector clocks into this picture.

In a system with N processes, each process keeps a vector timestamp TS[N]

Lamport clocks can guarantee that if a < b then C(a) < C(b). However it can’t guarantee,

A casuality relation states that if an event e1 possibly influences the generation of event e2,
then e1 < e2. What’s better way to establish such a relation than relying on message passing

ng establishes a happens before order on events based
on the communication pattern. For example if a process receives a message as event A,
processes the message as B and sends out a new message to another process as event C then

enced the generation of event C and hence A & C are casually

In a system with N processes, each process keeps a vector timestamp TS[N]

1. In Process i,
a. TS[j] is logical time of process j as process i knows about it.
 b. TS[i] is the lamport clock of process i.
2. When a new event is generated, TS[i] = TS[i] + 1
3. When sending a message we copy the vector clock to the message
4. On recipient of message with vector timestamp MTS we set the TS of process i as,
 TS[k] = max(TS[k], MTS[k]) for k = 1 to N
The happened before ordering in vector clocks is defined as follows.
e1 < e2 iff TS(e1)[k] <= TS(e2)[k] for k = 1 to N
* atleast one of the value of indices of e1 should be less than e2’s value
The timestamp of an event would tell us what all events among all processes would have
influenced the generation of that particular event. So if e1 < e2, then e2 would have
witnessed all the events that has been witnessed by e1. With vector clocks we can ascertain
if TS(e1) < TS(e2) then e1 < e2.

Causal Ordering of Messages

Explanation of Causal Ordering of Messages:
The purpose of causal ordering of messages is to insure that the same causal relationship
for the "message send" events correspond with "message receive" events. (i.e. All the
messages are processed in order that they were created.)

Birman-Schiper-Stephenson Protocol
There are three basic principles to this algorithm:

1. All messages are time stamped by the sending process.
[Note: This time is separate from the global time talked about in the previous
sections. Instead each element of the vector corresponds to the number of
messages sent (including this one) to other processes.]

2. A message can not be delivered until:
o All the messages before this one have been delivered locally.
o All the other messages that have been sent out from the original processs has

been accounted as delivered at the receiving process.
3. When a message is delivered, the clock is updated.

This protocol requires that the processes communicate through broadcast messages since
this would ensure that only one message could be received at any one time (thus
concurrently timestamped messages can be ordered).
[Note: There may be other reasons that broadcast messages are required.]

Schiper-Eggli-Sandoz Protocol
Instead of maintaining a vector clock based on the number of messages sent to each
process, the vector clock for this protocol can increment at any rate it would like to and has
no additional meaning related to the number of messages currently outstanding.
Sending a message:

1. All messages are timestamped and sent out with a list of all the timestamps of
messages sent to other processes.

2. Locally store the timestamp that the message was sent with.
Receiving a message:

 A message cannot be delivered if there is a message mentioned in the list of
timestamps that predates this one.

 Otherwise, a message can be delivered, performing the following steps:
1. Merge in the list of timestamps from the message:

 Add knowledge of messages destined for other processes to our list of
processes if we didn't know about any other messages destined for one
already.

 If the new list has a timestamp greater than one we already had stored,
update our timestamp to match.

2. Update the local logical clock.
3. Check all the local buffered messages to see if they can now be delivered.

Global state recording Chandy Lamport Algorithm
The assumptions of the algorithm are as follows:
 There are no failures and all messages arrive intact and only once
 The communication channels are unidirectional and FIFO ordered
 There is a communication path between any two processes in the system
 Any process may initiate the snapshot algorithm
 The snapshot algorithm does not interfere with the normal execution of the processes
 Each process in the system records its local state and the state of its incoming channels
The algorithm works using marker messages. Each process that wants to initiate a snapshot
records its local state and sends a marker on each of its outgoing channels. All the other
processes, upon receiving a marker, record their local state, the state of the channel from
which the marker just came as empty, and send marker messages on all of their outgoing
channels. If a process receives a marker after having recorded its local state, it records the
state of the incoming channel from which the marker came as carrying all the messages
received since it first recorded its local state.
Some of the assumptions of the algorithm can be facilitated using a more reliable
communication protocol such as TCP/IP. The algorithm can be adapted so that there could
be multiple snapshots occurring simultaneously.
The Chandy-Lamport algorithm works like this:

1. The observer process (the process taking a snapshot):
1. Saves its own local state
2. Sends a snapshot request message bearing a snapshot token to all other

processes
2. A process receiving the snapshot token for the first time on any message:

1. Sends the observer process its own saved state

2. Attaches the snapshot token to all subsequent messages (to help propagate the
snapshot token)

3. When a process that has already received the snapshot token receives a message that
does not bear the snapshot token, this process will forward that message to the
observer process. This message was obviously sent before the snapshot “cut off” (as
it does not bear a snapshot token and thus must have come from before the snapshot
token was sent out) and needs to be included in the snapshot.

From this, the observer builds up a complete snapshot: a saved state for each process and
all messages “in the ether” are saved.

Cuts in Distributed Computing
There are two formal models of distributed systems: synchronous and asynchronous.
Synchronous distributed systems have the following characteristics:

 the time to execute each step of a process has known lower and upper bounds;
 each message transmitted over a channel is received within a known bounded time;
 each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution
speeds, message transmission delays, or clock drift rates. Most distributed systems we
discuss, including the Internet, are asynchronous systems.
Generally, timing is a challenging an important issue in building distributed systems.
Consider a couple of examples:

 Suppose we want to build a distributed system to track the battery usage of a bunch
of laptop computers and we'd like to record the percentage of the battery each has
remaining at exactly 2pm.

 Suppose we want to build a distributed, real time auction and we want to know
which of two bidders submitted their bid first.

 Suppose we want to debug a distributed system and we want to know whether
variable x1 in process p1 ever differs by more than 50 from variable x2 in process p2.

In the first example, we would really like to synchronize the clocks of all participating
computers and take a measurement of absolute time. In the second and third examples,
knowing the absolute time is not as crucial as knowing the order in which events occurred.

Clock Synchronization
Every computer has a physical clock that counts oscillations of a crystal. This hardware
clock is used by the computer's software clock to track the current time. However, the
hardware clock is subject to drift-- the clock's frequency varies and the time becomes
inaccurate. As a result, any two clocks are likely to be slightly different at any given time.
The difference between two clocks is called their skew.
There are several methods for synchronizing physical clocks. External
synchronization means that all computers in the system are synchronized with an external
source of time (e.g., a UTC signal). Internal synchronization means that all computers in
the system are synchronized with one another, but the time is not necessarily accurate with
respect to UTC.
In a synchronous system, synchronization is straightforward since upper and lower bounds
on the transmission time for a message are known. One process sends a message to another

process indicating its current time, t. The second process sets its clock to t +
(max+min)/2 where max and min are the upper and lower bounds for the message
transmission time respectively. This guarantees that the skew is at most (max-min)/2.
Cristian's method for synchronization in asynchronous systems is similar, but does not rely
on a predetermined max and min transmission time. Instead, a process p1 requests the
current time from another process p2 and measures the RTT (Tround) of the request/reply.
Whenp1 receives the time t from p2 it sets its time to t + Tround/2.
The Berkeley algorithm, developed for collections of computers running Berkeley UNIX,
is an internal synchronization mechanism that works by electing a master to coordinate the
synchronization. The master polls the other computers (called slaves) for their times,
computes an average, and tells each computer by how much it should adjust its clock.
The Network Time Protocol (NTP) is yet another method for synchronizing clocks that
uses a hierarchical architecture where he top level of the hierarchy (stratum 1) are servers
connected to a UTC time source.

Logical Time
Physical time cannot be perfectly synchronized. Logical time provides a mechanism to
define the causal order in which events occur at different processes. The ordering is based
on the following:

 Two events occurring at the same process happen in the order in which they are
observed by the process.

 If a message is sent from one process to another, the sending of the message
happened before the receiving of the message.

 If e occurred before e' and e' occurred before e" then e occurred before e".
"Lamport called the partial ordering obtained by generalizing these two relationships
the happened-before relation." (→)

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f .
However, we cannot say that a → e or vice versa; we say that they are concurrent
(a || e).
A Lamport logical clock is a monotonically increasing software counter, whose value need
bear no particular relationship to any physical clock. Each process pi keeps its own logical
clock, Li, which it uses to apply so-called Lamport timestamps to events.
Lamport clocks work as follows:

 LC1: Li is incremented before each event is issued at pi.
 LC2:

o When a process pi sends a message m, it piggybacks on m the value t = Li.
o On receiving (m, t), a process pj computes Lj := max(Lj, t) and then applies

LC1 before timestamping the event receive(m).
An example is shown below:

If e → e ' then L(e) < L(e'), but the converse is not true. Vector clocks address this
problem. "A vector clock for a system of N processes is an array of N integers." Vector
clocks are updated as follows:
VC1: Initially, Vi[j] = 0 for i, j = 1, 2, ..., N
VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1.
VC3: pi includes the value t = Vi in every message it sends.
VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2,
...N. Taking the componentwise maximum of two vector timestamps in this way is known
as a merge operation.
An example is shown below:

Vector timestamps are compared as follows:
V=V' iff V[j] = V'[j] for j = 1, 2, ..., N
V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N
V < V' iff V <= V' and V != V'
If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' .

Global States
It is often desirable to determine whether a particular property is true of a distributed
system as it executes. We'd like to use logical time to construct a global view of the system
state and determine whether a particular property is true. A few examples are as follows:

 Distributed garbage collection: Are there references to an object anywhere in the
system? References may exist at the local process, at another process, or in the
communication channel.

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for"
relationship between processes?

 Distributed termination detection: Has a distributed algorithm terminated?
 Distributed debugging: Example: given two processes p1 and p2 with variables

x1 and x2 respectively, can we determine whether the condition |x1-x2| > δ is ever
true.

In general, this problem is referred to as Global Predicate Evaluation. "A global state
predicate is a function that maps from the set of global state of processes in the system ρ to
{True, False}."

 Safety - a predicate always evaluates to false. A given undesirable property (e.g.,
deadlock) never occurs.

 Liveness - a predicate eventually evaluates to true. A given desirable property (e.g.,
termination) eventually occurs.

Cuts of a Distributed Computation
Because physical time cannot be perfectly synchronized in a distributed system it is not
possible to gather the global state of the system at a particular time. Cuts provide the
ability to "assemble a meaningful global state from local states recorded at different
times".
Definitions:

 ρ is a system of N processes pi (i = 1, 2, ..., N)
 history(pi) = hi = < e i 0 , e i 1 ,...>
 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history
 s i k is the state of the process pi immediately before the kth event occurs
 All processes record sending and receiving of messages. If a process pi records the

sending of message m to process pj and pj has not recorded receipt of the message,
then m is part of the state of the channel between pi and pj.

 A global history of ρ is the union of the individual process histories: H = h0 ∪ h1 ∪
h2 ∪...∪hN-1

 A global state can be formed by taking the set of states of the individual processes:
S = (s1, s2, ..., sN)

 A cut of the system's execution is a subset of its global history that is a union of
prefixes of process histories (see figure below).

 The frontier of the cut is the last state in each process.
 A cut is consistent if, for all events e and e':

o (e ∈ C and e ' → e) ⇒ e ' ∈ C
 A consistent global state is one that corresponds to a consistent cut.

Distributed Debugging
To further examine how you might produce consistent cuts, we'll use the distributed
debugging example. Recall that we have several processes, each with a variable xi. "The
safety condition required in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)."
The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the
safety condition was ever violated. The processes in the system, p1, p2, ..., pN, send their
states to a passive monitoring process, p0. p0 is not part of the system. Based on the states
collected, p0 can evaluate the safety condition.
Collecting the state: The processes send their initial state to a monitoring process and send
updates whenever relevant state changes, in this case the variable xi. In addition, the
processes need only send the value of xi and a vector timestamp. The monitoring process
maintains a an ordered queue (by the vector timestamps) for each process where it stores
the state messages. It can then create consistent global states which it uses to evaluate the
safety condition.
Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor
process has received. Let V(si) be the vector timestamp of the state si received from pi.
Then it can be shown that S is a consistent global state if and only if:
V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N

Termination Detection
Huang's algorithm is an algorithm for detecting termination in a distributed system. The
algorithm was proposed by Shing-Tsaan Huang in 1989 in the Journal of Computers.
Termination detection

The basis of termination detection is in the concept of a distributed system process' state.
At any time, a process in a distributed system is either in an active state or in an idle state.
An active process may become idle at any time but an idle process may only become
active again upon receiving a computational message.
Termination occurs when all processes in the distributed system become idle and there are
no computational messages in transit.
Algorithm
Huang's algorithm can be described by the following:
 Initially all processes are idle.
 A distributed task is started by a process sending a computational message to another

process. This initial process to send the message is the "controlling agent".

o The initial weight of the controlling agent is {\displaystyle w} (usually 1).
 The following rules are applied throughout the computation:

o A process sending a message splits its current weight between itself and the message.
o A process receiving a message adds the weight of the message to itself.
o Upon becoming idle, a process sends a message containing its entire weight back to

the controlling agent and it goes idle.

o Termination occurs when the controlling agent has a weight of {\displaystyle w}
 and is in the idle state.

Some weaknesses to Huang's algorithm are that it is unable to detect termination if a
message is lost in transit or if a process fails while in an active state.

What does Distributed System mean? Explain the concept of DOS?

A distributed system is a network that consists of autonomous computers that are
connected using a distribution middleware. They help in sharing different resources and
capabilities to provide users with a single and integrated coherent network.
Concept of Distributed Operating System
Distributed Operating System is a model where distributed applications are running on
multiple computers linked by communications. A distributed operating system is an
extension of the network operating system that supports higher levels of communication
and integration of the machines on the network.
This system looks to its users like an ordinary centralized operating system but runs on
multiple, independent central processing units (CPUs).

These systems are referred as loosely coupled systems where each processor has its own
local memory and processors communicate with one another through various
communication lines, such as high speed buses or telephone lines. By loosely coupled
systems, we mean that such computers possess no hardware connections at the CPU -
memory bus level, but are connected by external interfaces that run under the control of
software.
The Distributed Os involves a collection of autonomous computer systems, capable of
communicating and cooperating with each other through a LAN / WAN. A Distributed Os
provides a virtual machine abstraction to its users and wide sharing of resources like as
computational capacity, I/O and files etc.

The structure shown in fig contains a set of individual computer systems and workstations
connected via communication systems, but by this structure we can not say it is a
distributed system because it is the software, not the hardware, that determines whether a
system is distributed or not.
The users of a true distributed system should not know, on which machine their programs
are running and where their files are stored. LOCUS and MICROS are the best examples
of distributed operating systems.
Using LOCUS operating system it was possible to access local and distant files in uniform
manner. This feature enabled a user to log on any node of the network and to utilize the
resources in a network without the reference of his/her location. MICROS provided
sharing of resources in an automatic manner. The jobs were assigned to different nodes of
the whole system to balance the load on different nodes.
Below given are some of the examples of distributed operating systems:
l. IRIX operating system; is the implementation of UNIX System V, Release 3 for Silicon
Graphics multiprocessor workstations.
2. DYNIX operating system running on Sequent Symmetry multiprocessor computers.
3. AIX operating system for IBM RS/6000 computers.
4. Solaris operating system for SUN multiprocessor workstations.
5. Mach/OS is a multithreading and multitasking UNIX compatible operating system;
6. OSF/1 operating system developed by Open Foundation Software: UNIX compatible.
Distributed systems provide the following advantages:
1 Sharing of resources.
2 Reliability.
3 Communication.
4 Computation speedup
Distributed systems are potentially more reliable than a central system because if a system
has only one instance of some critical component, such as a CPU, disk, or network
interface, and that component fails, the system will go down. When there are multiple
instances, the system may be able to continue in spite of occasional failures. In addition to
hardware failures, one can also consider software failures. Distributed systems allow both
hardware and software errors to be dealt with.
A distributed system is a set of computers that communicate and collaborate each other
using software and hardware interconnecting components. Multiprocessors (MIMD
computers using shared memory architecture), multicomputers connected through static or
dynamic interconnection networks (MIMD computers using message passing architecture)
and workstations connected through local area network are examples of such distributed
systems.
A distributed system is managed by a distributed operating system. A distributed operating
system manages the system shared resources used by multiple processes, the process
scheduling activity (how processes are allocating on available processors), the
communication and synchronization between running processes and so on. The software
for parallel computers could be also tightly coupled or loosely coupled. The loosely
coupled software allows computers and users of a distributed system to be independent
each other but having a limited possibility to cooperate. An example of such a system is a
group of computers connected through a local network. Every computer has its own

memory, hard disk. There are some shared resources such files and printers. If the
interconnection network broke down, individual computers could be used but without
some features like printing to a non-local printer.

Features of Distributed Systems:
Basic features of distributed system

1. 1. Basic featuresof distributedsystem Transparency Transparency or single-system
image refers to the ability of an application to treat the system on which it operates
without regard to whether it is distributed and without regard to hardware or other
implementation details. Many areas of a system can benefit from transparency,
including access, location, performance, naming, and migration. The consideration
of transparency directly affects decision making in every aspect of design of a
distributed operating system. Transparency can impose certain requirements and/or
restrictions on other design considerations. Inter-process communication Inter-
Process Communication (IPC) is the implementation of general communication,
process interaction, and dataflow between threads and/or processes both within a
node, and between nodes in a distributed OS. The intra-node and inter-node
communication requirements drive low- level IPC design, which is the typical
approach to implementing communication functions that support transparency. In
this sense, Inter process communication is the greatest underlying concept in the
low-level design considerations of a distributed operating system. Process
management Process management provides policies and mechanisms for effective
and efficient sharing of resources between distributed processes. These policies and
mechanisms support operations involving the allocation and de-allocation of
processes and ports to processors, as well as mechanisms to run, suspend, migrate,
halt, or resume process execution. While these resources and operations can be
either local or remote with respect to each other, the distributed OS maintains state
and synchronization over all processes in the system. As an example, load balancing
is a common process management function. Load balancing monitors node
performance and is responsible for shifting activity across nodes when the system is
out of balance. One load balancing function is picking a process to move. The kernel
may employ several selection mechanisms, including priority-based choice. This
mechanism chooses a process based on a policy such as 'newest request'. The system
implements the policy Resource management Systems resources such as memory,
files, devices, etc. are distributed throughout a system, and at any given moment,
any of these nodes may have light to idle workloads. Load sharing and load
balancing require many policy-oriented decisions, ranging from finding idle CPUs,
when to move, and which to move. Many algorithms exist to aid in these decisions;
however, this calls for a second level of decision making policy in choosing the
algorithm best suited for the scenario, and the conditions surrounding the scenario.
Reliability

2. 2. or a process must establish exclusive access to a shared resource. Improper
synchronization can lead to multiple failure modes including loss of atomicity,
consistency, isolation and durability, deadlock, livelock and loss of
serializability.[citation needed] Flexibility Flexibility in a distributed operating

system is enhanced through the modular and characteristics of the distributed OS,
and by providing a richer set of higher-level services. The completeness and quality
of the kernel/microkernel simplifies implementation of such services, and
potentially enables service providers greater choice of providers for such
services.[citation needed] one or more processes must wait for an asynchronous
condition in order to continue, one or more processes must synchronize at a given
point for one or more other processes to continue, Distributed OS can provide the
necessary resources and services to achieve high levels of reliability, or the ability to
prevent and/or recover from errors. Faults are physical or logical defects that can
cause errors in the system. For a system to be reliable, it must somehow overcome
the adverse effects of faults. The primary methods for dealing with faults include
fault avoidance, fault tolerance, and fault detection and recovery. Fault avoidance
covers proactive measures taken to minimize the occurrence of faults. These
proactive measures can be in the form of transactions, replication and backups. Fault
tolerance is the ability of a system to continue operation in the presence of a fault. In
the event, the system should detect and recover full functionality. In any event, any
actions taken should make every effort to preserve the single system image.
Availability Availability is the fraction of time during which the system can respond
to requests. Performance Many benchmark metrics quantify performance;
throughput, response time, job completions per unit time, system utilization, etc.
With respect to a distributed OS, performance most often distills to a balance
between process parallelism and IPC.[citation needed] Managing the task
granularity of parallelism in a sensible relation to the messages required for support
is extremely effective.[citation needed] Also, identifying when it is more beneficial
to migrate a process to its data, rather than copy the data, is effective as
well.[citation needed] Synchronization Cooperating concurrent processes have an
inherent need for synchronization, which ensures that changes happen in a correct
and predictable fashion. Three basic situations that define the scope of this need:

3. 3. Operating systems are there from the very first computer generation. Operating
systems keep evolving over the period of time. Following are few of the important
types of operating system which are most commonly used. Batch operating system
The users of batch operating system do not interact with the computer directly. Each
user prepares his job on an off-line device Reduces CPU idle time. Disadvantages
of Timesharing operating systems are following. Avoids duplication of software.
Provide advantage of quick response. Difficult to provide the desired priority.
Time-sharing operating systems Time sharing is a technique which enables many
people, located at various terminals, to use a particular computer system at the same
time. Time-sharing or multitasking is a logical extension of multiprogramming.
Processor's time which is shared among multiple users simultaneously is termed as
time-sharing. The main difference between Multiprogrammed Batch Systems and
Time-Sharing Systems is that in case of Multiprogrammed batch systems, objective
is to maximize processor use, whereas in Time-Sharing Systems objective is to
minimize response time. Multiple jobs are executed by the CPU by switching
between them, but the switches occur so frequently. Thus, the user can receives an
immediate response. For example, in a transaction processing, processor execute

each user program in a short burst or quantum of computation. That is if n users are
present, each user can get time quantum. When the user submits the command, the
response time is in few seconds at most. Operating system uses CPU scheduling and
multiprogramming to provide each user with a small portion of a time. Computer
systems that were designed primarily as batch systems have been modified to time-
sharing systems. Advantages of Timesharing operating systems are following CPU
is often idle, because the speeds of the mechanical I/O devices is slower than CPU.
Lack of interaction between the user and job. like punch cards and submits it to the
computer operator. To speed up processing, jobs with similar needs are batched
together and run as a group. Thus, the programmers left their programs with the
operator. The operator then sorts programs into batches with similar requirements.
The problems with Batch Systems are following.

4. 4. Dependency on a central location for most operations. High cost of buying and
running a server. Remote access to servers is possible from different locations and
types of systems. The disadvantages of network operating systems are following.
Upgrades to new technologies and hardwares can be easily integrated into the
system. Security is server managed. Centralized servers are highly stable.
Reduction of delays in data processing. Network operating System Network
Operating System runs on a server and and provides server the capability to manage
data, users, groups, security, applications, and other networking functions. The
primary purpose of the network operating system is to allow shared file and printer
access among multiple computers in a network, typically a local area network
(LAN), a private network or to other networks. Examples of network operating
systems are Microsoft Windows Server 2003, Microsoft Windows Server 2008,
UNIX, Linux, Mac OS X, Novell NetWare, and BSD. The advantages of network
operating systems are following. Reduction of the load on the host computer.
Better service to the customers. If one site fails in a distributed system, the
remaining sites can potentially continue operating. Speedup the exchange of data
with one another via electronic mail. With resource sharing facility user at one site
may be able to use the resources available at another. Problem of data
communication. Distributed operating System Distributed systems use multiple
central processors to serve multiple real time application and multiple users. Data
processing jobs are distributed among the processors accordingly to which one can
perform each job most efficiently. The processors communicate with one another
through various communication lines (such as high-speed buses or telephone lines).
These are referred as loosely coupled systems or distributed systems. Processors in a
distributed system may vary in size and function. These processors are referred as
sites, nodes, computers and so on. The advantages of distributed systems are
following. Question of security and integrity of user programs and data. Problem
of reliability.

5. 5. Regular maintenance and updates are required. Real Time operating System Real
time system is defines as a data processing system in which the time interval
required to process and respond to inputs is so small that it controls the environment.
Real time processing is always on line whereas on line system need not be real time.

The time taken by the system to respond to an input and display of required updated
information is termed as response time. So in this method response time is very less
as compared to the online processing. Real-time systems are used when there are
rigid time requirements on the operation of a processor or the flow of data and real-
time systems can be used as a control device in a dedicated application. Real-time
operating system has well-defined, fixed time constraints otherwise system will
fail.For example Scientific experiments, medical imaging systems, industrial control
systems, weapon systems, robots, and home-applicance controllers, Air traffic
control system etc. There are two types of real-time operating systems. Hard real-
time systems Hard real-time systems guarantee that critical tasks complete on time.
In hard real-time systems secondary storage is limited or missing with data stored in
ROM. In these systems virtual memory is almost never found. Soft real-time
systems Soft real time systems are less restrictive. Critical real-time task gets
priority over other tasks and retains the priority until it completes. Soft real-time
systems have limited utility than hard real- time systems.For example, Multimedia,
virtual reality, Advanced Scientific Projects like undersea exploration and planetary
rovers etc.

Limitations of Distributed Operating System

 The added complexity required to ensure proper co-ordination among the sites, is
the major limitation. This increased complexity takes various forms :

 Software Development Cost : It is more difficult to implement a distributed database
system; thus it is more costly.

 Greater Potential for Bugs : Since the sites that constitute the distributed database
system operate parallel, it is harder to ensure the correctness of algorithms,
especially operation during failures of part of the system, and recovery from
failures. The potential exists for extremely subtle bugs.

 increased Processing Overhead : The exchange of information and additional
computation required to achieve intersite co-ordination are a form of overhead that
does not arise in centralized system.

 Absence of global clock... so that no synchronization among processes.
 Absence of dynamic memory.... So at a particular time a process can only get partial

& coherent state Or complete & incoherent state of the distributed system.
 Coherent:- recorded state of all the processes at any given time

