
Communication Networks: Sharing 
and Switches 

 
So far in this course we have studied techniques to engineer a point-to-point communication link. 

Two important considerations were at the heart of most everything we studied: 

1. Improving link communication reliability: Inter-symbol interference (ISI) and noise con- 

spired to introduce errors in transmission. We developed techniques to select a suit- able 

sampling rate and method using eye diagrams and then reduced the bit-error rate using 

channel coding (block, Reed-Solomon, and convolutional codes). 

2. Sharing a link: We wanted to share the same communication medium amongst k different 

receivers, each tuned to a different frequency. To achieve this goal, we used digital 

modulation, and learned that understanding the frequency response of an LTI system and 

designing filters are key building blocks for this task. 

We now turn to the study of communication networks—systems that connect three or more 

computers (or phones)1 together. 

The key idea that we will use to engineer communication networks is composition: we will 

build small networks by composing links together, and build larger networks by com- posing 

smaller networks together. 

The fundamental challenges in the design of a communication network are the same as those 

that face the designer of a communication link: sharing and reliability. The big difference is that 

the sharing problem is considerably more challenging, and many more things can go wrong in 

networking2 many computers together, making communication more unreliable than a single 

link’s unreliability. The next few lectures will show you these challenges and you will understand 

the key ideas in how these challenges are overcome. 

In addition to sharing and reliability, an important and difficult problem that many 

communication networks (such as the Internet) face is scalability: how to engineer a very large, 

global system. We won’t say very much about scalability in this course, leaving this important 

issue to future courses in EECS. 
1 



2  
 

 

 
 

 

Figure 15-1: A communication network with a link between every pair of computers has a quadratic num- ber of 

links. This approach is too expensive and is especially untenable when the computers are far from each other. 

 

 15.1 Sharing with Switches 

The collection of techniques used to design a communication link, including modulation and 

error-correcting channel coding, is usually implemented in a module called the phys- ical layer 

(or “PHY” for short). The sending PHY takes a stream of bits and arranges to send it across the 

link to the receiver; the receiving PHY provides its best estimate of the stream of bits sent from 

the other end. On the face of it, once we know how to develop a communication link, connecting 

a collection of N computers together is ostensibly quite straightforward: one could simply connect 

each pair of computers with a wire and use the physical layer running over the wire to 

communicate between the two computers. This picture for a small 5-node network is shown in 

Figure 15-1. 

This simple strawman using dedicated pairwise links has two severe problems. First, it is 

extremely expensive. The reason is that the number of distinct communication links that one 

needs to build scales quadratically with N , because there are about N 2 different bi-directional 

links in this design. The cost of operating such a network would be pro- hibitively expensive, 

and each additional node added to the network would incur a cost proportional to the size of the 

network! Second, some of these links would have to span an enormous distance; imagine how the 

computers in Cambridge, MA, would be connected to those in Cambridge, UK, or (to go further) 

to those in India or China. Such “long-haul” links are difficult to engineer, so one can’t assume that 

they will be available in abundance. Clearly we need a better design, one that can “do for a dime 

what any fool can do for a dollar”.3 The key to a practical design of a communication network is a 

special computing device called a switch. A switch has multiple “interfaces” (or ports) on it; a 

link (wire or radio) can be connected to each interface. The switch allows multiple different 

communi- cations between different pairs of computers to run over each individual link—that is, 

it arranges for the network’s links to be shared by different communications. In addition to 
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Figure 15-2: A simple network topology showing communicating end points, links, and switches. 

 

the links, the switches themselves have some resources (memory and computation) that will be 

shared by all the communicating computers. 

Figure 15-2 shows the general idea. A switch receives bits that are encapsulated in data frames 

(in some networks, these are called packets, as explained below) arriving over its links, processes 

them (in a way that we will make precise later), and forwards them (again, in a way that we will 

make precise later) over one or more other links. 

We will use the term end points to refer to the communicating computers, and call the switches 

and links over which they communicate the network infrastructure. The resulting structure is 

termed the network topology, and consists of nodes (the switches and end points) and links. A 

simple network topology is shown in Figure 15-2. We will model the network topology as a graph 

to solve various problems. 

Figure 15-3 show a few switches of relatively current vintage (ca. 2006). 

 
 15.1.1 Three Problems That Switches Solve 

The fundamental functions performed by switches are to multiplex and demultiplex data frames 

belonging to different computer-to-computer information transfer sessions, and to determine the 

link(s) along which to forward any given data frame. This task is essen- tial because a given 

physical link will usually be shared by several concurrent sessions between different computers. 

We break these functions into three problems: 

 
1. Forwarding: When a data frame arrives at a switch, the switch needs to process it, 

determine the correct outgoing link, and decide when to send the frame on that link. 
 

2. Routing: Each switch somehow needs to determine the topology of the network, so that it 

can correctly construct the data structures required for proper forwarding. The process by 

which the switches in a network collaboratively compute the network topology, adapting to 

various kinds of failures, is called routing. It does not happen on each data frame, but 

occurs in the “background”. 

 

3. Resource allocation: Switches allocate their resources—access to the link and local 

memory—to the different communications that are in progress. 
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Figure 15-3: A few modern switches. 

 

Over time, two radically different methods have been developed for solving these problems. 

These techniques differ in the way the switches forward data and allocate re- sources (there are 

also some differences in routing, but they are less significant). The first method, used by networks 

like the telephone network, is called circuit switching. The sec- ond method, used by networks 

like the Internet, is called packet switching. 

There are two crucial differences between the two methods, one philosophical and the other 

mechanistic. The mechanistic difference is the easier one to understand, so we’ll talk about it first. 

In a circuit-switched network, the frames do not (need to) carry any special information that tells 

the switches how to forward information, while in packet-switched networks, they do. The 

philosophical difference is more substantive: a circuit-switched network provides the abstraction 

of a dedicated link of some bit rate to the communicating entities, whereas a packet switched 

network does not.4 Of course, this dedicated link tra- verses multiple physical links and at least 

one switch, so the end points and switches must do some additional work to provide the illusion of 

a dedicated link. A packet-switched network, in contrast, provides no such illusion; once again, 

the end points and switches must do some work to provide reliable and efficient communication 

service to the appli- cations running on the end points. 

 
 15.2 Circuit Switching 

The transmission of information in circuit-switched networks usually occurs in three phases (see 

Figure 15-4): 
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Figure 15-4: Circuit switching requires setup and teardown phases. 

 

 
 

Figure 15-5: Circuit switching with Time Division Multiplexing (TDM). Each color is a different conver- sation 

and there are a maximum of N = 6  concurrent communications on the link in this picture. Each communication 

(color) is sent in a fixed time-slot, modulo N . 

 
1. the setup phase, in which some state is configured at each switch along a path from source 

to destination, 

2. the data transfer phase when the communication of interest occurs, and 

3. the teardown phase that cleans up the state in the switches after the data transfer ends. 

Because the frames themselves contain no information about where they should go, the setup 

phase needs to take care of this task, and also configure (reserve) any resources needed for the 

communication so that the illusion of a dedicated link is provided. The teardown phase is needed 

to release any reserved resources. 
 

 15.2.1 Example: Time-Division Multiplexing (TDM) 

A common (but not the only) way to implement circuit switching is using time-division 

multiplexing (TDM), also known as isochronous transmission. Here, the physical capacity, or 
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bit rate,5 of a link connected to a switch, C (in bits/s), is conceptually broken into some number N 

of virtual “channels” (or time slots), such that the ratio C/N bits/s is sufficient for each 

information transfer session (such as a telephone call between two parties). Call this ratio, R, the 

rate of each independent transfer session. Now, if we constrain each frame to be of some fixed size, 

s bits, then the switch can perform time multiplexing by allocating the link’s capacity in time-slots 

of length s/C units each, and by associating the ith time- slice to the ith transfer (modulo N ). It is 

easy to see that this approach provides each session with the required rate of R bits/s, because 

each session gets to send s bits over a time period of Ns/C seconds, and the ratio of the two is 

equal to C/N = R bits/s. 

Each data frame is therefore forwarded by simply using the time slot in which it arrives at the 

switch to decide which port it should be sent on. Thus, the state set up during the first phase has 

to associate one of these channels with the corresponding soon-to-follow data transfer by 

allocating the ith time-slice to the ith transfer. The end points transmitting data send frames only at 

the specific time-slots that they have been told to do so by the setup phase. 

Other ways of doing circuit switching include wavelength division multiplexing (WDM), 

frequency division multiplexing (FDM), and code division multiplexing (CDM); the latter two (as 

well as TDM) are used in some wireless networks, while WDM is used in some high- speed 

optical networks. 

 

 15.2.2 Pros and Cons 

Circuit switching makes sense for a network where the workload is relatively uniform, with all 

information transfers using the same capacity, and where each transfer uses a con- stant bit rate (or 

near-constant bit rate). The most compelling example of such a workload is telephony, where 

each digitized voice call might operate at 64 kbits/s. Switching was first invented for the 

telephone network, well before computers were on the scene, so this design choice makes a great 

deal of sense. The classical telephone network as well as the cellular telephone network in most 

countries still operate in this way, though telephony over the Internet is becoming increasingly 

popular and some of the network infrastructure of the classical telephone networks is moving 

toward packet switching. 

However, circuit-switching tends to waste link capacity if the workload has a variable bit rate, 

or if the frames arrive in bursts at a switch. Because a large number of computer applications 

induce burst data patterns, we should consider a different link sharing strat- egy for computer 

networks. Another drawback of circuit switching shows up when the 

(N + 1)st communication arrives at a switch whose relevant link already has the maxi- 

mum number (N ) of communications going over it. This communication must be denied 
 

5This number is sometimes referred to as the “bandwidth” of the link. Technically, bandwidth is a quantity measured 
in Hertz and refers to the width of the frequency over which the transmission is being done. To avoid confusion, we will 
use the term “bit rate” to refer to the number of bits per second that a link is currently operating at, but the reader should 
realize that the literature often uses “bandwidth” to refer to this term. The reader should also be warned that some 
people (curmudgeons?) become apoplectic when they hear someone using “bandwidth” for the bit rate of a link. A more 
reasonable position is to realize that when the context is clear, there’s not much harm in using “bandwidth”. The reader 
should also realize that in practice most wired links usually operate at a single bit rate (or perhaps pick one from a fixed 
set when the link is configured), but that wireless links using radio communication can operate at a range of bit rates, 
adaptively selecting the modulation and coding being used to cope with the time-varying channel conditions caused by 
interference and movement. 
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access (or admission) to the system, because there is no capacity left for it. For applications that 

require a certain minimum bit rate, this approach might make sense, but even in that case a “busy 

tone” is the result. However, there are many applications that don’t have a minimum bit rate 

requirement (email and file downloads are examples); for this reason as well, a different sharing 

strategy is worth considering. 

Packet switching doesn’t have these drawbacks. 

 

 15.3 Packet Switching 

The best way to overcome the above inefficiencies is to allow for any sender to transmit data at 

any time, but yet allow the link to be shared. Packet switching is a way to accom- plish this task, 

and uses a tantalizingly simple idea: add to each frame of data a little bit of information that tells 

the switch how to forward it. This information is added in the form of a packet header and the 

resulting frame is called a packet.6 In the most common form of packet switching, the header of 

each packet contains the address of the destination, which uniquely identifies the destination of 

data. The switches use this information to process and forward each packet. Packets usually also 

include the sender’s address to help the receiver send messages back to the sender. 

The job of the switch is to use the destination address as a key and perform a lookup on a data 

structure called a routing table (or forwarding table; the distinction between the two is sometimes 

important and will become apparent in a later lecture in the course). This lookup returns an 

outgoing link to forward the packet on its way toward the intended destination. 

While forwarding is a relatively simple lookup in a data structure, the trickier question that we 

will spend time on is determining how the entries in the routing table are ob- tained. The plan is to 

use a background process called a routing protocol, which is typically implemented in a 

distributed manner by the switches. There are several types of routing protocols that one might 

consider, and we will study two common classes of protocols in later lectures. For now, it is 

enough to understand that the result of running a routing pro- tocol is to obtain routes (which you 

can think of as paths for the time being) in the network to every destination—each switch 

dynamically constructs and updates its routing table using the routing protocol and uses this table 

to forward data packets. 

Switches in packet-switched networks that implement the functions described in this section 

are often called routers. Packet forwarding and routing using the Internet Protocol (IP) in the 

Internet is an example of packet-switching. 
 

 15.3.1 Why Packet Switching Works: Statistical Multiplexing 

Packet switching does not provide the illusion of a dedicated link to any pair of commu- nicating 

end points, but it has a few things going for it: 

1. it doesn’t waste the capacity of any link because each switch can send any packet available 

to it that needs to use that link, 

2. it does not require any setup or teardown phases and so can be used even for small transfers 

without any overhead, and 
6Sometimes, the term datagram is used instead of (or in addition to) the term “packet”. 
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Figure 15-6: Packet switching works because of statistical multiplexing. This picture shows a simulation of N 

senders, each connected at a fixed bit rate of 1 megabit/s to a switch, sharing a single outgoing link. The y-axis 

shows the aggregate bit rate (in megabits/s) as a function of time (in milliseconds). In this simulation, each 

sender is in either the “on” (sending) state or the “off” (idle) state; the durations of each state are drawn from a 

Pareto distribution (which has a “heavy tail”). 

 

3. it can provide variable data rates to different communications essentially on an “as needed” 

basis. 

 

At the same time, notice that because there is no reservation of resources, packets could arrive 

faster than can be sent over a link, and the switch must be able to handle such situations. Switches 

deal with transient bursts of traffic that arrive faster than a link’s bit rate using queues. We will 

spend some time understanding what a queue does and how it absorbs bursts, but for now, let’s 

assume that a switch has large queues and understand why packet switching actually works. 

Packet switching supports end points sending data at variable rates. If a large number of end 

points conspired to send data in a synchronized way to exercise a link at the same time, then one 

would end up having to provision a link to handle the peak synchronized rate for packet switching 

to provide reasonable service to all the concurrent communica- tions. 

Fortunately, at least in a network with benign, or even greedy individual communicat- ing 

pairs, it is highly unlikely that all the senders will be perfectly synchronized. Even when senders 

send long bursts of traffic, as long as they alternate between “on” and “off” states and move 

between these states at random (the probability distributions for these could be complicated and 

involve “heavy tails” and high variances), the aggregate traffic 
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Figure 15-7: Network traffic variability. 

 
of multiple senders tends to smooth out a bit.7 

An example is shown in Figure 15-6. The x-axis is time in milliseconds and the y-axis shows 

the bit rate of the set of senders. Each sender has a link with a fixed bit rate connect- ing it to the 

switch. The picture shows how the aggregate bit rate over this short time-scale (4 seconds), though 

variable, becomes smoother as more senders share the link. This kind of multiplexing relies on the 

randomness inherent in the concurrent communications, and is called statistical multiplexing. 

Real-world traffic has bigger bursts than shown in this picture and the data rate usu- ally varies 

by a large amount depending on time of day. Figure 15-7 shows the bit rates observed at an MIT 

lab for different network applications.   Each point on the y-axis is    a 5-minute average, so it 

doesn’t show the variations over smaller time-scales as in the previous figure. However, it shows 

how much variation there is with time-of-day. 

So far, we have discussed how the aggregation of multiple sources sending data tends to 

smooth out traffic a bit, enabling the network designer to avoid provisioning a link for the sum of 

the peak offered loads of the sources. In addition, for the packet switching idea to really work, one 

needs to appreciate the time-scales over which bursts of traffic occur in real life. 

What better example to use than traffic generated over the duration of a 6.02 lecture on the 

802.11 wireless LAN in 34-101 to illustrate the point?! We captured all the traffic that traversed 

this shared wireless network on a few days during lecture. On a typical day, about a Gigabyte of 

traffic goes through it over a 50-minute lecture, with numerous applications in the mix. As one 

might expect, most of the traffic is due to Bittorrent, Web browsing, email, with the occasional IM 

sessions thrown in the mix. Domain name sys- tem (DNS) lookups, which are used by most 

Internet applications, also generate a sizable number of packets (but not bytes). 
7It’s worth noting that many large-scale distributed denial-of-service attacks try to take out web sites by sat- urating 

its link with a huge number of synchronized requests or garbage packets, each of which individually takes up only a 
tiny fraction of the link. 
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Figure 15-8: Traffic bursts at different time-scales, showing some smoothing. Bursts still persist, though. 

 

 
Figure 15-8 shows the aggregate amount of data, in bytes, as a function of time, over different 

time durations. The top picture shows the data over 10 millisecond windows— here, each y-axis 

point is the total number of bytes observed over the wireless network corresponding to a non-

overlapping 10-millisecond time window. We show the data here for a randomly chosen time 

period that lasts 17 seconds. The most noteworthy aspect of this picture is the bursts that are 

evident: the maximum (not shown is as high as 50 Kbytes over this duration, but also note how 

successive time windows could change between close to 20 Kbytes and nearly 0. From time to 

time, larger bursts occur where the network is essentially continuously in use (for example, 

starting at 14:12:38.55). 

The middle picture shows what happens when we look at 100 millisecond windows. Clearly, 

bursts persist, but the variance has reduced. When we move to 1 second windows, we see the same 

effect persisting, though again it’s worth noting that the bursts don’t actually disappear. 

These data sets exemplify the traffic dynamics that a network designer has to plan  for while 

designing a network. One could pick a data rate that is higher than the peak expected over a short 

time-scale, but that would be several times larger than picking a smaller value and using a queue 

to absorb the bursts and send out packets over a link of a smaller rate. In practice, this problem 

is complicated because network sources are not 

10 ms windows 

100 ms windows 
!"#$% 
'( ti*$ 

1 second windows 
!"#$% 
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Figure 15-9: Packet switching uses queues to buffer bursts of packets that have arrived at a rate faster than the 

bit rate of the link. 

 
“open loop”, but actually react to how the network responds to previously sent traffic. Un- 

derstanding how this feeback system works is beyond the scope of 6.02; here, we will look at how 

queues work. 

 
 15.3.2 Absorbing bursts with queues 

Queues are a crucial component in any packet switch. They absorb bursts of data (see Figure 15-

9, so a key question is how they big they should be. The reason this question  is important is that 

if you make them too big, all that happens is that delays grow (for queues by themselves don’t 

make data transfers go any faster), but if you make them too small, the switch may drop too many 

packets. We won’t be able to completely address this problem in this course, but it is a question 

that we will discuss further in a later lecture. 

Queues add delay and these delays are variable. In fact, queues are only one of four different 

sources of delays in networks. The next section describes these sources and talks in more detail 

about queueing delays and how to analyze them. The key result that we will look at here is called 

Little’s law. 

 
 15.4 Understanding Network Delays 

An important measure of performance of any communication network is the network de- lay, also 

called the network latency. There are four sources of delay: 

1. Propagation delay. This source of delay is due to the fundamental limit on the time it takes 

to send any signal over the medium. For a wire, it’s the speed of light over that material 

(for typical fiber links, it’s about two-thirds the speed of light in vac- uum). For radio 

communication, it’s the speed of light in vacuum (air), about 3 × 108 meters/second. 

The best way to think about the propagation delay for a link is that it is equal to the time for 

the first bit of any transmission to reach the intended destination. For a path comprising 

multiple links, just add up the individual propagation delays. 
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2. Processing delay. Whenever a packet (or data frame) enters a switch,  it needs to  be 

processed before it is sent over the outgoing link. In a packet-switched network, this 

processing involves, at the least, looking up the header of the packet in a table to determine 

the outgoing link. It may also involve operations like computing a packet checksum, 

modifying the packet’s header, etc. The total time taken for all such operations is called the 

processing delay of the switch. 

3. Transmission delay. The transmission delay of a link is the time it takes for a packet of size 

S bits to traverse the link. If the bit rate of the link is R bits/second, then the transmission 

delay is S/R seconds. 

4. Queueing delay. Queues are a fundamental data structure used in packet-switched 

networks to absorb bursts of data arriving for an outgoing link at speeds that are 

(transiently) faster than the link’s bit rate. The time spent by a packet waiting in the queue 

is its queueing delay. 

Unlike the other components mentioned above, the queueing delay is usually vari- able. In 

many networks, it might also be the dominant source of delay, accounting for about 50% (or 

more) of the delay experienced by packets when the network is con- gested. In some 

networks, such as those with satellite links, the propagation delay could be the dominant 

source of delay. 

 

 15.4.1 Little’s Law 

A common method used by engineers to analyze network performance, particularly delay and 

throughput (the rate at which packets are delivered), is queueing theory. In this course, we will use 

an important, widely applicable result from queueing theory, called Little’s law (or Little’s 

theorem).8 It’s used widely in the performance evaluation of systems ranging from 

communication networks to factory floors to manufacturing systems. 

For any stable (i.e., where the queues aren’t growing without bound) queueing system, Little’s 

law relates the average arrival rate of items (e.g., packets), λ, the average delay experienced by an 

item in the queue, D, and the average number of items in the queue, N . The formula is simple and 

intuitive: 
 

N = λ × D (15.1) 

Example.  Suppose packets arrive at an average rate of 1000 packets per second into  a 

switch, and the rate of the outgoing link is larger than this number. (If the outgoing rate is smaller, 

then the queue will grow unbounded.) It doesn’t matter how inter-packet arrivals are distributed; 

packets could arrive in weird bursts according to complicated distributions. Now, suppose there 

are 50 packets in the queue on average. That is, if we sample the queue size at random points in 

time and take the average, the number is 50 packets. 

Then, from Little’s law, we can conclude that the average queueing delay experienced by a 

packet is 50/1000 seconds = 50 milliseconds. 
8This “queueing formula” was first proved in a general setting by John D.C. Little, who is now an Institute 

Professor at MIT (he also received his PhD from MIT in 1955). In addition to the result that bears his name, he is a 
pioneer in marketing science. 
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Figure 15-10: Packet arrivals into a queue, illustrating Little’s law. 

 

Little’s law is quite remarkable because it is independent of how items (packets) arrive or are 

serviced by the queue. Packets could arrive according to any distribution. They can be serviced in 

any order, not just FIFO. They can be of any size. In fact, about the only practical requirement is 

that the queueing system be stable. It’s a useful result that can  be used profitably in back-of-the-

envelope calculations to assess the performance of real systems. 

Why does this result hold? Proving the result in its full generality is beyond the scope of this 

course, but we can show it quite easily with a few simplifying assumptions using an essentially 

pictorial argument. The argument is instructive and sheds some light into the dynamics of packets 

in a queue. 

Figure 15-10 shows n(t), the number of packets in a queue, as a function of time t. Each time a 

packet enters the queue, n(t) increases by 1. Each time the packet leaves, n(t) decreases by 1. The 

result is the step-wise curve like the one shown in the picture. 
For simplicity, we will assume that the queue size is 0 at time 0 and that there is some time T 

>> 0 at which the queue empties to 0. We will also assumes that the queue services jobs in FIFO 

order (note that the formula holds whether these assumptions are true or not). Let P be the total 

number of packets forwarded by the switch in time T (obviously, in our special case when the 

queue fully empties, this number is the same as the number that 

entered the system). 

Now, we need to define N , λ, and D. One can think of N as the time average of the number of 

packets in the queue; i.e., 
 

T 

N = n(t)/T. 
t=0 

 

The rate λ is simply equal to P/T , for the system processed P packets in time T . 

D, the average delay, can be calculated with a little trick. Imagine taking the total area under 

the n(t) curve and assigning it to packets as shown in Figure 15-10. That is, packets A, B, C, ... 

each are assigned the different rectangles shown. The height of each rectangle is 1 (i.e., one 

packet) and the length is the time until some packet leaves the system. Each packet’s rectangle(s) 

last until the packet itself leaves the system. 

Now, it should be clear that the time spent by any given packet is just the sum of the areas of 

the rectangles labeled by that packet. 
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Therefore, the average delay experienced by a packet, D, is simply the area under the n(t) 

curve divided by the number of packets. That’s because the total area under the curve, which is n(t) 

is total delay experienced by all packets. 

Hence, 
T 

D = n(t)/P. 
t=0 

From the above expressions, Little’s law follows: N = λ × D. 

 
 Problems and Questions 

These questions are to help you improve your understanding of the concepts discussed in this 

lecture. The ones marked *PSet* are in the online problem set. Some of these problems will be 

discussed in recitation sections. If you need help with any of these questions, please ask anyone on 

the staff. 

 

1. Under what conditions would circuit switching be a better network design than packet 

switching? 
 

2. Which of these statements are correct? 

 
(a) Switches in a circuit-switched network process connection establishment and tear-

down messages, whereas switches in a packet-switched network do not. 

(b) Under some circumstances, a circuit-switched network may prevent some senders 

from starting new conversations. 

(c) Once a connection is correctly established, a switch in a circuit-switched net- work 

can forward data correctly without requiring data frames to include a destination 

address. 

(d) Unlike in packet switching, switches in circuit-switched networks do not need any 

information about the network topology to function correctly. 

 
3. Consider a switch that uses time division multiplexing (rather than statistical multi- plexing) 

to share a link between four concurrent connections (A, B, C, and D) whose packets arrive 

in bursts. The link’s data rate is 1 packet per time slot. Assume that the switch runs for a 

very long time. 

 
(a) The average packet arrival rates of the four connections (A through D), in pack- ets per 

time slot, are 0.2, 0.2, 0.1, and 0.1 respectively. The average delays ob- served at the 

switch (in time slots) are 10, 10, 5, and 5. What are the average queue lengths of the 

four queues (A through D) at the switch? 

(b) Connection A’s packet arrival rate now changes to 0.4 packets per time slot. All the 

other connections have the same arrival rates and the switch runs un- changed. What 

are the average queue lengths of the four queues (A through D) now? 
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4. *PSet* Over many months, you and your friends have painstakingly collected a 1,000 

Gigabytes (aka 1 Terabyte) worth of movies on computers in your dorm (we won’t ask 

where the movies came from). To avoid losing it, you’d like to back the data up on to a 

computer belonging to one of your friends in New York. 

You have two options: 

 

A. Send the data over the Internet to the computer in New York. The data rate for 

transmitting information across the Internet from your dorm to New York is 1 

Megabyte per second. 

B. Copy the data over to a set of disks, which you can do at 100 Megabytes per second 

(thank you, firewire!). Then rely on the US Postal Service to send the disks by mail, 

which takes 7 days. 

 

Which of these two options (A or B) is faster? And by how much? Note 

on units: 

1 kilobyte = 103 bytes 

1 megabyte = 1000 kilobytes = 106 bytes 1 

gigabyte = 1000 megabytes = 109 bytes 1 

terabyte = 1000 gigbytes = 1012 bytes 

5. Little’s law can be applied to a variety of problems in other fields. Here are some simple 

examples for you to work out. 

 

(a) F freshmen enter MIT every year on average. Some leave after their SB degrees (four 

years), the rest leave after their MEng (five years). No one drops out (yes, really). The 

total number of SB and MEng students at MIT is N . 

What fraction of students do an MEng? 

(b) A hardware vendor manufactures $300 million worth of equipment per year. On 

average, the company has $45 million in accounts receivable. How much time elapses 

between invoicing and payment? 

(c) While reading a newspaper, you come across a sentence claiming that “less than 1% of 

the people in the world die every year”. Using Little’s law (and some common sense!), 

explain whether you would agree or disagree with this claim. Assume that the number 

of people in the world does not decrease during the year (this assumption holds). 

 

6. You send a stream of packets of size 1000 bytes each across a network path from 

Cambridge to Berkeley. You find that the one-way delay varies between 50 ms (in the 

absence of any queueing) and 125 ms (full queue), with an average of 75 ms. The 

transmission rate at the sender is 1 Mbit/s; the receiver gets packets at the same rate without 

any packet loss. 

 

A. What is the mean number of packets in the queue at the bottleneck link along the path 

(assume that any queueing happens at just one switch). 
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You now increase the transmission rate to 2 Mbits/s. You find that the receiver gets packets 

at a rate of 1.6 Mbits/s. The average queue length does not change apprecia- bly from before. 
 

B. What is the packet loss rate at the switch? 

C. What is the average one-way delay now? 
 

7. Consider the network topology shown below. 

 

 

(a) The sender sends to packets back-to-back with a negligible inter-packet delay. The 

queue has no other packets. What is the time delay between the arrival of the first bit 

of each packet at the receiver? 

(b) The receiver acknowledges each packet to the sender, and each acknowledg- ment has 

a size A = 100 bytes. What is the minimum possible round trip time between the 

sender and receiver? The round trip time is defined as the duration between the 

transmission of a packet and the receipt of an acknowledgment for it. 
 

8. *PSet* The wireless network provider at a hotel wants to make sure that anyone try- ing to 

access the network is properly authorized and their credit card charged before being allowed. 

This billing system has the following property: if the average number of requests currently 

being processed is N, then the average delay for the request is a + bN 2, where a and b are 

constants. What is the maximum rate (in requests per second) at which the billing server 

can serve requests? 

 
 Acknowledgments 

Many thanks to Sari Canelake and Lavanya Sharan for their careful reading and helpful comments. 


	15.1 Sharing with Switches
	15.1.1 Three Problems That Switches Solve

	15.2 Circuit Switching
	15.2.1 Example: Time-Division Multiplexing (TDM)
	15.2.2 Pros and Cons

	15.3 Packet Switching
	15.3.1 Why Packet Switching Works: Statistical Multiplexing
	15.3.2 Absorbing bursts with queues

	15.4 Understanding Network Delays
	15.4.1 Little’s Law

	Problems and Questions
	Acknowledgments

