
1

TGPCET/IT

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

Department of Information Technology

‘UNIT	–I	NOTES
Subject:- Algorithm	&	Data	Structures	 Semester:- IV

Unit – I

Q:1Give	 Introduction	to	Data	Structures,	Time	&	space	analysis	of	algorithm

Introduction	to	Data	Structures

Ans:-Data	 Structure	 is	 a	way	of	 collecting	 and	 organizing	 data	 in	 such	 a	way	 that	we	 can	
perform	operations	on	these	data	in	an	effective	way.	Data	Structures	is	about	rendering	data	
elements	in	terms	of	some	relationship,	for	better	organization	and	storage.	For	example,	we	
have	data	player's	name	"Virat"	and	age	26.	Here	"Virat"	is	of	String data	type	and	26	is	of	
integer data	type.	

We	can	organize	this	data	as	a	record	like	Player record.	Now	we	can	collect	and	store	player's	
records	 in	 a	 file	 or	 database	 as a	 data	 structure.	 For	 example:	 "Dhoni"	 30,	 "Gambhir"	 31,	
"Sehwag"	33

In	simple	language,	Data	Structures	are	structures	programmed	to	store	ordered	data,	so	that	
various	operations	can	be	performed	on	it	easily.

Basic	types	of	Data	Structures

As	we	discussed	above,	anything	that	can	store	data	can	be	called	as	a	data	strucure,	hence	
Integer,	Float,	Boolean,	Char	etc,	all	are	data	structures.	They	are	known	as	Primitive Data
Structures.

Then	we	also	have	some	complex	Data	Structures,	which	are	used	to	store large	and	connected	
data.	Some	example	of	Abstract Data Structure are	:	

∑ Linked	List
∑ Tree

Syllabus

An	Introduction	to	data	structure:	Introduction,	Definition,	Classification	of	data	
structure,	 Concept	 of	 data,	 Data	 types,	 Abstract	 data	 Types	 (ADT),	 Features	 of	
structured	program.	Introduction	to	algorithms:	Definition	and	Characteristics	of	an	
Algorithm,	Apriori	analysis,	Time	and	space	complexity,	Average	 ,	Best	and	Worst	
case	complexities,	Big	„O‟	Notations,	Asymptotic	notations,	Top-Down	and	bottom-
up	 programming	 techniques,	 Recursion,	Divide	 and	 conquer	 strategy.	 (e.g.	 Quick	
sort,)

2

∑ Graph
∑ Stack,	Queue	etc.

All	these	data	structures	allow	us	to	perform	different	operations	on	data.	We	select	these	
data	structures	based	on	which	type	of	operation	 is	required.	We	will	 look	into	 these	data	
structures	in	more	details	in	our	later	lessons.

Q:2What	is	Algorithm	?

Ans:-An	algorithm	 is	 a	 finite	 set	 of	 instructions	or	 logic,	written	 in	 order,	 to	 accomplish	 a	
certain	predefined	 task.	Algorithm	is	not	 the	complete	 code	or	program,	 it	 is	 just	 the	core	
logic(solution)	 of	 a	 problem,	 which	 can	 be	 expressed	 either	 as	 an	 informal	 high	 level	
description	as	pseudocode or	using	a	flowchart.	

An	algorithm	is	said	to	be	efficient	and	fast,	if	it	takes	less	time	to	execute	and	consumes	less	
memory	 space.	 The	 performance	 of	 an	 algorithm	 is	 measured	 on	 the	 basis	 of	 following	
properties:

1. Time	Complexity
2. Space	Complexity

Space	Complexity

Its	the	amount	of	memory	space	required	by	the	algorithm,	during	the	course	of	its	execution.	
Space	 complexity	must	be	 taken	 seriously	 for	multi-user	 systems	and	 in	 situations	where	
limited	memory	is	available.

An	algorithm	generally	requires	space	for	following	components	:

∑ Instruction Space : Its	 the	 space	 required	 to	 store	 the	 executable	 version	 of	 the	
program.	This	space	is	fixed,	but	varies	depending	upon	the	number	of	lines	of	code	in	
the	program.

∑ Data Space : Its	the	space	required	to	store	all	the	constants	and	variables	value.
∑ Environment Space : Its	 the	 space	 required	 to	 store	 the	 environment	 information	

needed	to	resume	the	suspended	function.

3

Time	Complexity

Time	Complexity	is	a	way	to	represent	the amount	of	time	needed	by	the	program	to	run	to	
completion.	We	will	study	this	in	details	in	our	section.

Time	Complexity	of	Algorithms

Time	complexity	of	an	algorithm	signifies	the	total	time	required	by	the	program	to	run	to	
completion.	The	time	complexity	of	algorithms	is	most	commonly	expressed	using	the	big O
notation.	

Time	 Complexity	 is	 most	 commonly	 estimated	 by	 counting	 the	 number	 of	 elementary	
functions	performed	by	the	algorithm.	And	since	the	algorithm's	performance	may	vary	with	
different	 types of	 input	 data,	 hence	 for	 an	 algorithm	we	 usually	 use	 the	worst-case Time
complexity of	an	algorithm	because	that	is	the	maximum	time	taken	for	any	input	size.

Calculating	Time	Complexity

Now	lets	tap	onto	the	next	big	topic	related	to	Time	complexity,	which	is	How	to	Calculate	
Time	Complexity.	It	becomes	very	confusing	some	times,	but	we	will	try	to	explain	it	in	the	
simplest	way.

Now	the	most	common	metric	for	calculating	time	complexity	is	Big	O	notation.	This	removes	
all	constant	factors	so	that	the	running	time	can	be	estimated	in	relation	to	N,	as	N	approaches	
infinity.	In	general	you	can	think	of	it	like	this	: statement;

Above	we	have	a	single	statement.	Its	Time	Complexity	will	be	Constant.	The	running	time	of	
the	statement	will	not	change	in	relation	to	N.

for(i=0;	i	<	N;	i++)
{
statement;
}

The	time	complexity	for	the	above	algorithm	will	be	Linear.	The	running	time	of	the	loop	is	
directly	proportional	to	N.	When	N	doubles,	so	does	the	running	time.

for(i=0;	i	<	N;	i++)	
{
for(j=0;	j	<	N;j++)
{	
statement;
}
}

This	time,	the	time	complexity	for	the	above	code	will	be	Quadratic.	The	running	time	of	the	
two	loops	is	proportional	to	the	square	of	N.	When	N	doubles,	the	running	time	increases	by	
N	*	N.

while(low	<=	high)	
{

4

mid	=	(low	+	high)	/	2;
if	(target	<	list[mid])
high	=	mid	- 1;
else	if	(target	>	list[mid])
low	=	mid	+	1;
else	break;
}

This	is	an	algorithm	to	break	a	set	of	numbers	into	halves,	to	search	a	particular	field(we	will	
study	this	in	detail	later).	Now,	this	algorithm	will	have	a	Logarithmic Time	Complexity.	The	
running	time	of	the	algorithm	is	proportional	to	the	number	of	times	N	can	be	divided	by	2(N	
is	high-low	here).	This	is	because	the	algorithm	divides	the	working	area	in	half	with	each	
iteration.

void	quicksort(int	list[],	int	left,	int	right)
{
int	pivot	=	partition(list,	left,	right);
quicksort(list,	left,	pivot	- 1);
quicksort(list,	pivot	+	1,	right);
}

Taking	 the	previous	algorithm	forward,	above	we	have	a	small	 logic	of	Quick	Sort(we	will	
study	this	in	detail	later).	Now	in	Quick	Sort,	we	divide	the	list	into	halves	every	time,	but	we	
repeat	the	iteration	N	times(where	N	is	the	size	of	list).	Hence	time	complexity	will	be	N*log(
N).	The	running	time	consists	of	N	loops	(iterative	or	recursive)	that	are	logarithmic,	thus	the	
algorithm	is	a	combination	of	linear	and	logarithmic.

Q:3	Explain	Types	of	Notations	for	Time	Complexity
Ans:- Now	we	will	discuss	and	understand	the	various	notations	used	for	Time	Complexity.	

1. Big	Oh denotes	"fewer	than	or	the	same	as"	<expression>	iterations.
2. Big	Omega denotes	"more	than	or	the	same	as"	<expression>	iterations.
3. Big	Theta denotes	"the	same	as"	<expression>	iterations.

v Big-O,	Big-Theta,	and	Big-Omega

Growth	of	Functions	and	Asymptotic	Notation
•	When	we	 study	 algorithms,	we	 are	 interested	 in	 characterizing	 them	 according	 to	 their	
efficiency.
•	We	are	usually	interesting	in	the	order	of	growth	of	the	running	time	of	an	algorithm,	not	in	
the	exact	running	time.	This	is	also	referred	to	as	the	asymptotic	running	time.
•	We	need	to	develop	a	way	to	talk	about	rate	of	growth	of	functions	so	that	we	can	compare	
algorithms.
•	Asymptotic	notation	gives	us	a	method	for	classifying	functions	according	to	 their	rate	of	
growth.

Big-O	(Oh)	Notation:
•	Definition:	f(n)	=	O(g(n))	iff	there	are	two	positive	constants	c	and	n0	such	that

|f(n)|	≤	c	|g(n)|	for	all	n	≥	n0
•	If	f(n)	is	nonnegative,	we	can	simplify	the	last	condition	to		0	≤	f(n)	≤	c	g(n)	for	all	n	≥	n0
•	We	say	that	“f(n)	is	big-O	of	g(n).”

5

•	As	n	increases,	f(n)	grows	no	faster	than	g(n).	In	other	words, g(n)	is	an	asymptotic	upper	
bound	on	f(n).

Example:	n2 +	n	=	O(n3)
Proof:
•	Here,	we	have	f(n)	=	n2 +	n,	and	g(n)	=	n3

•	Notice	that	if	n	≥	1,	n	≤	n3 is	clear.
•	Also,	notice	that	if	n	≥	1,	n2 ≤	n3 is	clear.
•	Side	Note:	In	general,	if	a	≤	b,	then	na	≤	nb		whenever	n	≥	1.	This	fact	is	used	often	in	these	
types	of	proofs.
•	Therefore,		n2 +	n	≤	n3 +	n3 =	2	n3

•	We	have	just	shown	that		n2 +	n	≤	2	n3 for	all	n	≥	1
•	Thus,	we	have	shown	that	n2 +	n	=	O(n3)		(by	definition	of	Big-O,	with	n0	=	1,	and	c	=	2.)

Big - Ω	(Omega)	Notation
•	Definition:	f(n)	=		(g(n))	iff	there	are	two	positive	constants	c	and	n0	such	that	|f(n)|	≥	c	|g(n)|	
for	all	n	≥	n0
•	If	f(n)	is	nonnegative,	we	can	simplify	the	last	condition	to	0	≤	c	g(n)	≤	f(n)	for	all	n	≥	n0
•	We	say	that	“f(n)	is	omega	of	g(n).”
•	As	n	increases,	f(n)	grows	no	slower	than	g(n).		In	other	words,	g(n)	is	an	asymptotic	lower	
bound	on	f(n).

Big-ʘ	(Theta)	Notation
•	Definition:	f(n)	=	(g(n))	iff	there	are	three	positive	constants	c1,	c2	and	n0	such	that	c1|g(n)|	
≤	|f(n)|	≤	c2|g(n)|	for	all	n	≥	n0
•	If	f(n)	is	nonnegative,	we	can	simplify	the	last	condition	to	0	≤	c1	g(n)	≤	f(n)	≤	c2	g(n)	for	all	
n	≥	n0
•	We	say	that	“f(n)	is	theta	of	g(n).”
•	As	n	increases,	f(n)	grows	at	the	same	rate	as	g(n).	In	other	words,	g(n)	is	an	asymptotically	
tight	bound	on	f(n).

6

ÿ Best,	Worst,	and	Average-Case	Complexity

Suppose	M	is	an	algorithm	and	n	is	the	size	of	input	data.	The	complexity	of	an	algorithm	m	is	
the	 function	 f(n)	 which	 gives	 the	 running	 time	 and/or	 storage	 space	 requirement	 of	 the	
algorithm	in	terms	of	size	n	of	the	input	data.

The	term	“Complexity”	shall	refer	to	the	running	time	of	the	algorithm.

To	understand	the	notions	of	the	best,	worst,	and	average-case	complexity,	one	must	think	
about	 running	 an	algorithm	on	 all	possible	 instances	 of	data	 that	 can	be	 fed	 to	 it.	 For	 the	
problem	 of	 sorting,	 the	 set	 of	 possible	 input	 instances	 consists	 of	 all	 the	 possible	
arrangements	of	all	the	possible	numbers	of	keys.	We	can	represent	every	input	instance	as	a	
point	on a	graph,	where	the x-axis	is	the	size	of	the	problem	(for	sorting,	the	number	of	items	
to	sort)	and	the y-axis	is	the	number	of	steps	taken	by	the	algorithm	on	this	instance.	Here	we	
assume,	quite	reasonably,	that	it	doesn't	matter	what	the	values	of	the	keys	are,	just	how	many	
of	them	there	are	and	how	they	are	ordered.	It	should	not	take	longer	to	sort	1,000	English	
names	than	it	does	to	sort	1,000	French	names,	for	example.

Figure: Best,	worst,	and	average-case	complexity

As	 shown	 in	 Figure ,	 these	 points	 naturally	 align	 themselves	 into	 columns,	 because	 only	
integers	represent	possible	input	sizes.	After	all,	it	makes	no	sense	to	ask	how	long	it	takes	to	
sort	10.57	 items.	Once	we	have	 these	points,	we	can	define	 three	different	 functions	over	
them:

The worst-case	 complexity of	 the	 algorithm	 is	 the	 function	 defined	 by	 the	 maximum	
number	of	steps	taken	on	any	instance	of	size n.	It	represents	the	curve	passing	through	the	
highest	point	of	each	column.

7

The best-case	complexity of	the	algorithm	is	the	function	defined	by	the	minimum	number	
of	steps	taken	on	any	instance	of	size n.	It	represents	the	curve	passing	through	the	lowest	
point	of	each	column.

Finally,	the average-case	complexity of	the	algorithm	is	the	function	defined	by	the	average	
number	of	steps	taken	on	any	instance	of	size n.

Q:4	Write	Short	note	on	Searching

Ans:-Searching in Linear Array:
The	process	of	finding	a	particular	element	of	an	array	is	called	Searching”.	If the	item	is	not	
present	in	the	array,	then	the	search	is	unsuccessful.

There	are	two	types	of	search	(Linear	search	and	Binary	Search)

v Linear	or	Sequential	Search

To	perform	a	linear	search	of	data	held	in	an	array,	the	search	starts	at	one	end	(usually	the	
low	numbered	element	of	the	array)	and	examines	each	element	in	the	array	until	one	of	two	
conditions	is	met.,	either	Condition	1:	the	target	has	been	found	or	Condition	2:	the	end	of	the	
data	has	been	reached	(the	target	value	is	not	in	the	data	set).

Note	that	the	algorithm	requires	that	both	tests	are	performed	and	that	the	search	terminates	
when	one	of	the	conditions	becomes	true.	The	second	test	is	required	to	prevent	the	algorithm	
from	attempting	 to	search	past	 the	end	of	the	data.	For	 illustration,	consider	the	 following	
data	set.	Again,	element	0	is	leftmost:

To	search	for	the	value	7	in	the	array,	we	start	by	examining	the	first	element	of	the	array.	
This	does	not	match	the	target,	so	we	increment	the	index	counter,	and	try	again.	We	now	
examine	the	next	element	of	the	array,	which	has	the	value	of	23.	This	does	not	match	the	
target,	so	we	again	increment	the	counter.	This	now	means	that	we	are	examining	the	element	
containing	7.	This	is	what	we	are	looking	for,	so	the	search	is	terminated,	and	the	result	of	the	
search	is	reported	back	to	the	calling function.	It	is	usual	to	return	the	index	of	the	element	
containing	the	target,	but	there	may	be	circumstances	where	a	different	return	value	may	be	
needed.

Linear	Search	Algorithm

Algorithm:	(Linear	Search)

LINEAR	(A,	SKEY)

Here	A	is	a	Linear	Array	with	N	elements	and	SKEY	is	a	given	item

8

of	information	to	search.	This	algorithm	finds	the	location	of	SKEY	in

A	and	if	successful,	it	returns	its	location	otherwise	it	returns	-1	for

unsuccessful.

1.	Repeat	for	i	=	0	to	N-1

2.	if(A[i]	=	SKEY)	return	i	[Successful	Search]

[End	of	loop]

3.	return	-1	[Un-Successful]

4.	Exit.

Program	for	Linear	Search:

Linear	 search	 in	 c	 programming:	 The	 following	 code	 implements	 linear	 search	
(Searching	algorithm)	which	is	used	to	find	whether	a	given	number	is	present	in	an	array	
and	if	it	is	present	then	at	what	location	it	occurs.	It	is	also	known	as	sequential	search.	It	is	
very	simple	and	works	as	follows:	We	keep	on	comparing	each	element	with	the	element	to	
search	until	the	desired	element	is	found	or	list	ends.

#include	<stdio.h>

int	main()
{
int	array[100],	search,	c,	n;

printf("Enter	the	number	of	elements	in	array\n");
scanf("%d",&n);

printf("Enter	%d	integer(s)\n",	n);

for	(c	=	0;	c	<	n;	c++)
scanf("%d",	&array[c]);

printf("Enter	the	number	to	search\n");
scanf("%d",	&search);

for	(c	=	0;	c	<	n;	c++)
{
if	(array[c]	==	search)					/*	if	required	element	found	*/
{
printf("%d	is	present	at	location	%d.\n",	search,	c+1);
break;

}
}
if	(c	==	n)
printf("%d	is	not	present	in	array.\n",	search);

return	0;
}

9

Output:

Complexity:

Worst	case	performance O(n)

Best	case	performance O(1)

Average	case	performance O(n)

Worst	case	space	complexity O(n)

2) Binary	Search		

Binary	search	is	also	known	as	binary	chop,	as	the	data	set	is	cut	into	two	halves	for	each	
step	 of	 the	 process.	 It	 is	 a	 very	much	 faster	 search	method	 than	 linear	 search,	 but	 to	 be	
effective	the	data	set	must	be	in	sorted	order	in	the	array.	If	the	data	set	changes	rapidly	and	
requires	regular	re-sorting	then	this	will	offset	the	speed	gain	offered	by	binary	search	over	
linear	search.

To	perform	binary	search,	 three	index	variables	are	required.	By	tradition	these	are	called	
'top',	'middle' and	'bottom'.	

Top	is	initialized	to	one	end	of	the	array,	often	0,	and	bottom	is	set	to	indicate	the	other	end	
of	the	array.

Once	these	two	variables	are	set,	the	value	of	middle	can	be	computed.	Middle	is	set	to	the	
midway	value	between	top	and	bottom.

10

The	 value	 indexed	 by	middle	 is	 compared	with	 the	 target	 value.	 There	 are	 initially	 three	
possible	outcomes	that	we	have	to	consider:	

1:	The	value	indexed	by	middle	matches	the	target.	In	this	case	the	search	has	found	the	target	
and	the	function	can	return	a	value	indicating	that	the	search	has	succeeded.

2.	The	value	is	higher	than	the	middle	value	in	which	case	only	the	values	from	middle	to	end	
need	to	be	searched

3.	The	value	is	lower	than	the	middle	value	in	which	case	the	search	is	carried	out	between	
zero	and	the	middle	value.

To	illustrate	this	process,	consider	the	following	scenario	- the	data	in	the	array	is	sorted	and	
the	target	is	29.	We	start	by	setting	top	to	9,	bottom	to	0,	and	calculating	middle	to	be	(0	+	9)	
/	2.	This	rounds	down	to	4	using	C	integer	arithmetic,	so	middle	is	set	to	4.

From	this	we	can	conclude	that	the	target	value	is	in	the	lower	half	of	the	table.	This	
means	that	top	must	be	set	to	middle	and	a	new	value	of	middle	calculated.	In	this	case	the	
value	of	middle	will	be	(4	+	0)/2	which	C	will	deliver	as	2.	The	contents	of	array	element	2	
matches	the	target,	so	in	this	case	the	search	is	successfully	concluded.

3) Binary	Search	Algorithm
Search	 as	 the	 name	 suggests,	 is	 an	 operation	 of	 finding	 an	 item	 from	 the	 given	

collection	of items.	Binary	Search	algorithm	is	used	to	find	the	position	of	a	specified	value	(an	
‘Input	Key’) given	by	the	user	in	a	sorted	list.

Algorithm:
Here	A	is	a	sorted	Linear	Array	with	N	elements	and	SKEY	is	a	given	item

of	information	to	search.	This	algorithm	finds	the	location	of	SKEY	in
A	and	if	successful,	it	returns	its	location	otherwise	it	returns	-1	for
unsuccessful.

11

BinarySearch	(A,	SKEY)

1.	[Initialize	segment	variables.]

Set	START=0,	END=N-1	and	MID=INT((START+END)/2).

2.	Repeat	Steps	3	and	4	while	START	≤	END	and	A[MID]≠SKEY.

3.	If	SKEY<	A[MID].	Then

Set	END=MID-1.

Else	Set	START=MID+1.

[End	of	If	Structure.]

4.	Set	MID=INT((START	+END)/2).

[End	of	Step	2	loop.]

5.	If	A[MID]=	SKEY	then	Set	LOC=	MID

Else:

Set	LOC	=	-1

[End	of	IF	structure.]

6.	return	LOC	and	Exit

Program for Binary	Search:
This	 code	 implements	binary	 search	 in	 c	 language.	 It	 can	only	be	used	 for	sorted	

arrays,	but	it's	fast	as	compared	to	linear	search.	If	you	wish	to	use	binary	search	on	an	array	
which	is	not	sorted	then	you	must	sort	it	using	some	sorting	technique	say	merge	sort	and	
then	use	binary	search	algorithm	to	find	the	desired	element	in	the	list.	If	the	element	to	be	
searched	is	found	then	its	position	is	printed.

#include	<stdio.h>

int	main()
{
int	c,	first,	last,	middle,	n,	search,	array[100];

printf("Enter	number	of	elements\n");
scanf("%d",&n);

printf("Enter	%d	integers\n",	n);

for	(c	=	0	;	c	<	n	;	c++)
scanf("%d",&array[c]);

printf("Enter	value	to	find\n");
scanf("%d",&search);

first	=	0;
last	=	n	- 1;
middle	=	(first+last)/2;

12

while(first	<=	last)
{
if	(array[middle]	<	search)
first	=	middle	+	1;				

else	if	(array[middle]	==	search)	
{
printf("%d	found	at	location	%d.\n",	search,	middle+1);
break;

}
else
last	=	middle	- 1;

middle	=	(first	+	last)/2;
}
if	(first	>	last)
printf("Not	found!	%d	is	not	present	in	the	list.\n",	search);

return	0;			
}

Output:

Complexity:

Worst	case	performance O(log	n)

Best	case	performance O(1)

Average	case	performance O(log	n)

Worst	case	space	complexity O(1)

Q:5	Explain	Sorting	in	detail.

13

Sorting	is	nothing	but	storage	of	data	in	sorted	order,	it	can	be	in	ascending	or	descending	
order.	The	term	Sorting	comes	into	picture	with	the	term	Searching.	There	are	so	many	things	
in	our	real	life	that	we	need	to	search,	like	a	particular	record	in	database,	roll	numbers	in	
merit	list,	a	particular	telephone	number,	any	particular	page	in	a	book	etc.	

Sorting arranges	data	 in	a	 sequence	which	makes	searching	easier.	Every	record	which	 is	
going	 to	 be	 sorted	 will	 contain	 one	 key.	 Based	 on	 the	 key	 the	 record	will	 be	 sorted.	 For	
example,	 suppose	we	have	a	record	of	students,	 every	such	record	will	have	the	 following	
data:	

∑ Roll	No.
∑ Name
∑ Age
∑ Class

Here	Student	roll	no.	can	be	taken	as	key	for	sorting	the	records	in	ascending	or	descending	
order.	Now	suppose we	have	to	search	a	Student	with	roll	no.	15,	we	don't	need	to	search	the	
complete	record	we	will	simply	search	between	the	Students	with	roll	no.	10	to	20.

Sorting	Efficiency

There	 are	 many	 techniques	 for	 sorting.	 Implementation	 of	 particular	 sorting	 technique	
depends	 upon	 situation.	 Sorting	 techniques	 mainly	 depends	 on	 two	 parameters.	 First	
parameter	 is	 the	 execution	 time	 of	 program,	 which	 means	 time	 taken	 for	 execution	 of	
program.	Second	is	the	space,	which	means	space	taken	by	the	program.	

Types	of	Sorting	Techniques

There	 are	 many	 types	 of	 Sorting	 techniques,	 differentiated	 by	 their	 efficiency	 and	 space	
requirements.	 Following	 are	 some	 sorting	 techniques	 which	 we	 will	 be	 covering	 in	 next	
sections.

1. Selection	Sort
2. Insertion	Sort
3. Bubble	Sort
4. Radix	Sort
5. Shell	Sort
6. Quick	Sort
7. Merge	Sort
8. Heap	Sort

1. Selection	Sort:

Selection	sorting	is	conceptually	the	simplest	sorting	algorithm.	This	algorithm	first	
finds	the	smallest	element	in the	array	and	exchanges	it	with	the	element	in	the	first	position,	
then	 finds	 the	 second	 smallest	 element	 and	 exchange	 it	 with	 the	 element	 in	 the	 second	
position,	and	continues	in	this	way	until	the	entire	array	is	sorted.

14

Example:

In	the	first	pass,	the	smallest	element	found	is	1,	so	it	is	placed	at	the	first	position,	then	
leaving	 first	 element,	 smallest	 element	 is	 searched	 from	 the	 rest	 of	 the	 elements,	 3	 is	 the	
smallest,	so	it	is	then	placed	at	the	second	position.	Then	we	leave	1	nad	3,	from	the	rest	of	
the	elements,	we	search	for	the	smallest	and	put	it	at	third	position	and	keep	doing	this,	until	
array	is	sorted.

Program	for	Selection	Sort:
This	 code	 implements	 selection	 sort	 algorithm	 to	 arrange	 numbers	 of	 an	 array	 in	

ascending	order.	With	a	little	modification	it	will	arrange	numbers	in	descending	order.

#include	<stdio.h>

int	main()
{
int	array[100],	n,	c,	d,	position,	swap;

printf("Enter	number	of	elements\n");
scanf("%d",	&n);

printf("Enter	%d	integers\n",	n);

for	(c	=	0	;	c	<	n	;	c++)
scanf("%d",	&array[c]);

for	(c	=	0	;	c	<	(n	- 1)	;	c++)
{
position	=	c;

for	(d	=	c	+	1	;	d	<	n	;	d++)
{
if	(array[position]	>	array[d])
position	=	d;

}
if	(position	!=	c)

15

{
swap	=	array[c];
array[c]	=	array[position];
array[position]	=	swap;

}
}

printf("Sorted	list	in	ascending	order:\n");

for	(c	=	0	;	c	<	n	;	c++)
printf("%d\n",	array[c]);

return	0;
}

Output	of	program:

Complexity:

Worst	case	performance О(n2)

Best	case	performance О(n2)

Average	case	performance О(n2)

Worst	case	space	complexity О(n)	total,	O(1)	auxiliary

2. Insertion	Sort:

16

It	 is	 a	 simple	 Sorting	 algorithm	 which	 sorts	 the	 array	 by	 shifting	 elements	 one	 by	 one.	
Following	are	some	of	the	important	characteristics	of	Insertion	Sort.

1. It	has	one	of	the	simplest	implementation
2. It	is	efficient	for	smaller	data	sets,	but	very	inefficient	for	larger	lists.
3. Insertion	Sort	 is	adaptive,	 that	means	 it	reduces	its	 total	number	of	steps	 if	given	a	

partially	sorted	list,	hence	it	increases	its	efficiency.
4. It	is	better	than	Selection	Sort	and	Bubble	Sort	algorithms.
5. Its	space	complexity	is	less,	 like	Bubble	Sorting,	inerstion sort	also	requires	a	single	

additional	memory	space.
6. It	is	Stable,	as	it	does	not	change	the	relative	order	of	elements	with	equal	keys

Example:

Program	for	Insertion	Sort:
This	 code	 implements	 insertion	 sort	 algorithm	 to	 arrange	 numbers	 of	 an	 array	 in	

ascending	order.	With	a	little	modification	it	will	arrange	numbers	in	descending	order.

17

#include	<stdio.h>

int	main()
{
int	n,	array[1000],	c,	d,	t;

printf("Enter	number	of	elements\n");
scanf("%d",	&n);

printf("Enter	%d	integers\n",	n);

for	(c	=	0;	c	<	n;	c++)	
{
scanf("%d",	&array[c]);

}

for	(c	=	1	;	c	<=	n	- 1;	c++)	
{
d	=	c;

while	(d	>	0	&&	array[d]	<	array[d-1])	
{
t	=	array[d];
array[d]			=	array[d-1];
array[d-1]	=	t;

d--;
}

}

printf("Sorted	list	in	ascending	order:\n");

for	(c	=	0;	c	<=	n	- 1;	c++)	{
printf("%d\n",	array[c]);
}

return	0;
}

Output	of	program:

18

Complexity:

Worst	case	performance О(n2)	comparisons,	swaps

Best	case	performance O(n)	comparisons,	O(1)	swaps

Average	case	performance О(n2)	comparisons,	swaps

Worst	case	space	
complexity

О(n)	total,	O(1)	auxiliary

3. Bubble	Sort:

Bubble	 Sort is	 an	 algorithm	which	 is	 used	 to	 sort	N elements	 that	 are	 given	 in	 a	
memory	for	eg:	an	Array	with	N number	of	elements.	Bubble	Sort	compares	all	the	element	
one	by	one	and	sort	them	based	on	their	values.

It	is	called	Bubble	sort,	because	with	each	iteration	the	smaller	element	in	the	list	bubbles	up	
towards	the	first	place,	just	like	a	water	bubble	rises	up	to	the	water	surface.

Sorting	takes	place	by	stepping	through	all	the	data	items	one-by-one	in	pairs	and	comparing	
adjacent	data	items	and	swapping	each	pair	that	is	out	of	order.

Bubble	Sort	Algorithm:

bubbleSort(A	: list of	sortable	items)
n	= length(A)

19

repeat
swapped	= false
for	i	= 1 to n-1 inclusive	do
/*	if	this	pair	is	out	of	order	*/
if A[i-1] > A[i] then
/*	swap	them	and	remember	something changed	*/
swap(A[i-1], A[i])
swapped	= true
end if
end for
until not	swapped

end procedure

Program	for	 Bubble	Sort	:
Code	 for	bubble	 sort	 to	 sort	numbers	or	arrange	 them	 in	ascending	order.	You	can	

easily	modify	it	to print	numbers	in	descending	order.

#include	<stdio.h>

int	main()
{
int	array[100],	n,	c,	d,	swap;

printf("Enter	number	of	elements\n");
scanf("%d",	&n);

printf("Enter	%d	integers\n",	n);

for	(c	=	0;	c	<	n;	c++)
scanf("%d",	&array[c]);

for	(c	=	0	;	c	<	(n	- 1);	c++)
{
for	(d	=	0	;	d	<	n	- c	- 1;	d++)
{
if	(array[d]	>	array[d+1])	/*	For	decreasing	order	use	<	*/
{
swap							=	array[d];
array[d]			=	array[d+1];
array[d+1]	=	swap;
}
}
}
printf("Sorted	list	in	ascending	order:\n");

for	(c	=	0	;	c	<	n	;	c++)
printf("%d\n",	array[c]);

return	0;
}

20

Output	of	program:

Complexity:

Worst	case	performance

Best	case	performance

Average	case	performance

Worst	case	space	complexity auxiliary

4. Radix	Sort:

Radix	Sort	is	a	clever	and	intuitive	little	sorting	algorithm.	Radix	Sort	puts	the	elements	
in	order	by	comparing	the	digits	of	the	numbers.	I	will	explain	with	an	example.

Consider	the	following	9	numbers:

493 812 715 710 195 437 582 340 385

We	should	start	sorting	by	comparing	and	ordering	the	one's digits:

Digit Sublist
0 340	710
1
2 812	582
3 493
4
5 715	195	385
6

21

7 437
8
9

Notice	that	the	numbers	were	added	onto	the	list	in	the	order	that	they	were	found,	which	is	
why	the	numbers	appear	to	be	unsorted	in	each	of	the	sublists	above.	Now,	we	gather	the	
sublists	(in	order	from	the	0	sublist	to	the	9	sublist)	into	the	main	list	again:

340 710 812 582 493 715 195 385 437

Note:	The	order in	which	we	divide	and	reassemble	the	list	is	extremely	important,	as	this	
is	one	of	the	foundations	of	this	algorithm.

Now,	the	sublists	are	created	again,	this	time	based	on	the	ten's digit:

Digit Sublist
0
1 710	812	715
2
3 437
4 340
5
6
7
8 582	385
9 493	195

Now	the	sublists	are	gathered	in	order	from	0	to	9:

710 812 715 437 340 582 385 493 195

Finally,	the	sublists	are	created	according	to	the	hundred's digit:

Digit Sublist
0
1 195
2
3 340	385
4 437	493
5 582
6
7 710	715
8 812
9

At	last,	the	list	is	gathered	up	again:

195 340 385 437 493 582 710 715 812

22

And	now	we	have	a	fully	sorted	array!	Radix	Sort	is	very	simple,	and	a	computer	can	do	it	fast.	
When	it	is	programmed	properly,	Radix	Sort	is	in	fact	one	of	the	fastest	sorting	algorithms
for	numbers	or	strings	of	letters.

Program	For	Radix	Sort:

#include<stdio.h>
#include<conio.h>

radix_sort(int	array[],	int	n);
void	main()
{
int	array[100],n,i;	
clrscr();
printf("Enter	the	number	of	elements	to	be	sorted:	");
scanf("%d",&n);
printf("\nEnter	the	elements	to	be	sorted:	\n");
for(i	=	0	;	i	<	n	;	i++)
{
printf("\tArray[%d]	=	",i);
scanf("%d",&array[i]);
}

printf("\nArray	Before	Radix	Sort:");		//Array	Before	Radix	Sort
for(i	=	0;	i	<	n;	i++)
{
printf("%8d",	array[i]);
}
printf("\n");

radix_sort(array,n);

printf("\nArray	After	Radix	Sort:	");		//Array	After	Radix	Sort
for(i	=	0;	i	<	n;	i++)
{
printf("%8d",	array[i]);
}
printf("\n");
getch();
}

radix_sort(int	arr[],	int	n)
{
int	bucket[10][5],buck[10],b[10];
int	i,j,k,l,num,div,large,passes;

div=1;
num=0;
large=arr[0];

for(i=0	;	i<n	;	i++)

23

{
if(arr[i]	>	large)
{
large	=	arr[i];
}

while(large	>	0)
{
num++;
large	=	large/10;
}

for(passes=0	;	passes<num	;	passes++)
{
for(k=0	;	k<10	;	k++)
{
buck[k]	=	0;
}
for(i=0	;	i<n		;i++)
{
l	=	((arr[i]/div)%10);
bucket[l][buck[l]++]	=	arr[i];
}

i=0;
for(k=0	;	k<10	;	k++)
{
for(j=0	;	j<buck[k]	;	j++)
{
arr[i++]	=	bucket[k][j];
}
}			
div*=10;			
}
}
}

Output	of	Program:

24

Complexity	of	Radix	Sort:

Worst	case	performance

Worst	case	space	complexity

5.	 Shell	Sort:

One	of	the	sources	of	inefficiency	in	the	sorts	that	we	have	discussed	so	far	is	that	the	
amount	of	'unsortedness'	reduces	slowly	as	items	are	moved	small	distances	or	only	limited	
numbers	 of	 items	 are	moved	 at	 a	 time.	 Shell	 sort	 is	 a	 well	 established	 sort	 that	 aims	 to	
overcoming	these	limitations	by	moving	many	items	large	distances	at	a	time.

Conceptually,	Shell	sort	divides	the	data	set	into	a	number	of	smaller	arrays	and	performs	an	
insertion	sort	on	these	smaller	arrays.	There	is	some	guidance	on	the	initial	number	of	slices	
to	divide	the	array	into,	but	every	data	set	seems	to	perform	slightly	differently.	Here	we	take	
a	conventional	approach	and	divide the	set	into	three	initially.	

Consider	the	dataset:

16	 4	 3	 13	 5	 6	 8	 9	 10	 11	 12	 17	 15	 18	 19	 7	 1	 2	 14	 20	

We	can	divide	this	into	three	smaller	slices:

16	 4	 3	 13	 5	 6	 8	
9	 10	 11	 12	 17	 15	 18	
19	 7	 1	 2	 14	 20	

Once	we	have	performed	this	slicing	we	can	sort	each	slice:

First	we	sort	the	first	column	(16	9	and	19)	to	give	9	16	19
Next	the	second	column	(4	10	and	7)	to	give	4	7	10
Column	three	(3	11	and	1)	to	give	1	3	11
Column	four	(13	12	and	2)	to	give	2	12	13
Column	five	(5	17	and	14)	to	give	5	14	17
Column	six	(6	15	and	20)	to	give	6	15	20	
and	column	seven	(8	and	18)	to	give	8	18

Reassembling	the	array	we	now	have:

9	 4	 1	 2	 5	 6	 8	 16	 7	 3	 12	 14	 15	 18	 19	 10	 11	 13	 17	 20	

We	now	slice	the	array	into	a	different	number	of	slices.	For	this	example	we	will	use	 five	
slices,	but	other	values	are	possible.

9	 4	 1	 2	 5	 6	 8	 16	 7	 3	 12	 14	 15	 18	 19	 10	 11	 13	 17	 20	

25

Slicing	this	into	five	we	get:

9	 4	 1	 2	
5	 6	 8	 16	
7	 3	 12	 14	
15	 18	 19	 10	
11	 13	 17	 20	

Again	we	sort	each	column	to	give:

5	 3	 1	 2	
7	 4	 8	 10	
9	 6	 12	 14	
11	 13	 17	 16	
15	 18	 19	 20	

Logically	reassembling,	we	now	have	the	dataset:

5	 3	 1	 2	 7	 4	 8	 10	 9	 6	 12	 14	 11	 13	 17	 16	 15	 18	 19	 20	

We	can	now	slice	the	array	into	10:

5	 3	
1	 2	
7	 4	
8	 10	
9	 6	
12	 14	
11	 13	
17	 16	
15	 18	
19	 20	

Sorting	the	columns	gives	us:

1	 2	
5	 3	
7	 4	
8	 6	
9	 10	

26

11	 13	
12	 14	
15	 16	
17	 18	
19	 20	

Reassembling	we	get:

1	 2	 5	 3	 7	 4	 8	 6	 9	 10	 11	 13	 12	 14	 15	 16	 17	 18	 19	 20	

The	majority	of	the	elements	are	now	near	to	where	they	should	be,	and	the	last	pass	
of	the	algorithm	is	a	conventional	insertion	sort.

Final	Sorted	List

1	 2	 3 4 5 6 7 8 9	 10	 11	 12 13 14	 15	 16	 17	 18	 19	 20	

Program	for	Shell	Sort:

1. #include	<stdio.h>
2.
3. intmain(void)
4. {
5. int array[5]={4,5,2,3,6},i1=0;
6. ShellSort(array,5);
7. printf("After	Sorting:");
8. for(i1=0;i1<5;i1++)
9. {printf("%d",array[i1]);
10. }
11. return 0;
12. }
13. void ShellSort(int *array,	int number_of_elements)
14. {
15. int i,	j,	increment,	temp;
16. for(increment	=	number_of_elements/2;increment	>	0;	increment	/=	2)
17. {
18. for(i	=	increment;	i<number_of_elements;	i++)
19. {
20. temp	=	array[i];
21. for(j	=	i;	j	>=	increment	;j-=increment)
22. {
23. if(temp	<	array[j-increment])
24. {
25. array[j]	=	array[j-increment];
26. }
27. else
28. {
29. break;

27

30. }
31. }
32. array[j]	=	temp;
33. }
34. }
35. }

Output	of	Program:

Complexity	Shell	Sort:

Worst	case	performance O(n2)

Best	case	performance O(n log2 n)

Average	case	performance depends	on	gap	sequence

Worst	case	space	complexity О(n)	total,	O(1)	auxiliary

Q:9	Explain	Quick	Sort	Algorithm

Quick	Sort,	as	the	name	suggests,	sorts	any	list	very	quickly.	Quick	sort	is	not	stable	search,	
but	it	is	very	fast	and	requires	very	less	aditional	space.	It	is	based	on	the	rule	of	Divide	and	
Conquer(also	called	partition-exchange	sort).	This	algorithm	divides	the	list	into	three	main	
parts	

1. Elements	less	than	the	Pivot	element
2. Pivot	element
3. Elements	greater	than	the	pivot	element

In	the	list	of	elements,	mentioned	in	below	example,	we	have	taken	25 as	pivot.	So	after	the	
first	pass,	the	list	will	be	changed	like	this.

6	8	17	14	25 63	37	52

Hnece	after	the	first	pass,	pivot	will	be	set	at	its	position,	with	all	the	elements	smaller	to	it	on	
its	left	and	all	the	elements	larger	than	it	on	the	right.	Now	6	8	17	14 and	63	37	52 are	considered	
as	 two	separate	 lists,	 and	same	 logic	 is	 applied	on	 them,	and	we	keep	doing	 this	until	 the	
complete	list	is	sorted.

http://en.wikipedia.org/wiki/Best,_worst_and_average_case

28

Example:

Algorithm Quick	Sort:

int	function	Partition	(Array	A,	int	Lb,	int	Ub);

begin

select	a	pivot	from	A[Lb]...A[Ub];

reorder	A[Lb]...A[Ub]	such	that:

all	values	to	the	left	of	the	pivot	are	<=	pivot

all	values	to	the	right	of	the	pivot	are	>=	pivot

return	pivot	position;

end;

procedure	QuickSort	(Array	A,	int	Lb,	int	Ub);

begin

if	Lb	<	Ub	then

M	=	Partition	(A,	Lb,	Ub);

QuickSort	(A,	Lb,	M	-1);

QuickSort	(A,	M,	Ub);

end;

Program	for Quick	Sort:
/*		a[]	is	the	array,	p	is	starting	index,	that	is	0,	
and	r	is	the	last	index	of	array.		*/

void	quicksort(int	a[],	int	p,	int	r)				

29

{
if(p <	r)
{
int	q;
q	=	partition(a,	p,	r);
quicksort(a,	p,	q);
quicksort(a,	q+1,	r);
}
}

int	partition(int	a[],	int	p,	int	r)
{
int	i,	j,	pivot,	temp;
pivot	=	a[p];
i	=	p;
j	=	r;
while(1)
{
while(a[i]	<	pivot	&& a[i]	!=	pivot)
i++;
while(a[j]	>	pivot	&&	a[j]	!=	pivot)
j--;
if(i	<	j)
{
temp	=	a[i];
a[i]	=	a[j];
a[j]	=	temp;
}
else
{
return	j;
}
}
}

Complexity	:

Worst	case	performance O(n2)

Best	case	performance
O(n log	n)	(simple	partition)
or	O(n)	(three-way	partition	and	equal	
keys)

Average	case	
performance O(n log	n)

Worst	case	space	
complexity

O(n)	auxiliary	(naive)
O(log	n)	auxiliary	

Q:10	Explain	Merge	Sort	Algorithm

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

30

Merge	Sort	follows	the	rule	of	Divide	and	Conquer.	But	it	doesn't	divides	the	list	into	
two	halves.	In	merge	sort	the	unsorted	list	is	divided	into	N	sublists,	each	having	one	element,	
because	a	list	of	one	element	is	considered	sorted.	Then,	it	repeatedly	merge	these	sublists,	to	
produce	new	sorted	sublists,	and	at	lasts	one	sorted	list	is	produced.

Merge	Sort	is	quite	fast,	and	has	a	time	complexity	of	O(n	log	n).	It	is	also	a	stable	sort,	which	
means	the	"equal"	elements	are	ordered	in	the	same	order	in	the	sorted	list.

Example:

Like	we	can	see	in	the	above	example,	merge	sort	first	breaks	the	unsorted	list	into	sorted	
sublists,	and	then	keep	merging	these	sublists,	to	finlly	get	the	complete	sorted	list.

Program	for	Merge	Sort:
/*		a[]	is	the	array,	p	is	starting	index,	that	is	0,	
and	r	is	the	last	index	of	array.		*/

Lets	take	a[5]	=	{32,	45,	67,	2,	7}	as	the	array	to	be	sorted.

void	mergesort(int	a[],	int	p,	int	r)
{
int	q;
if(p	<	r)
{

31

q	=	floor((p+r)	/	2);
mergesort(a,	p,	q);
mergesort(a,	q+1,	r);
merge(a,	p,	q,	r);
}
}

void	merge(int	a[],	int	p,	int	q,	int	r)
{
int	b[5];					//same	size	of	a[]
int	i,	j,	k;
k	=	0;
i	=	p;
j	=	q+1;
while(i	<=	q	&&	j	<=	r)
{
if(a[i]	<	a[j])
{
b[k++]	=	a[i++];							//	same	as	b[k]=a[i];	k++;	i++;
}
else
{
b[k++]	=	a[j++];
}
}

while(i	<=	q)
{
b[k++]	=	a[i++];
}

while(j	<=	r)
{
b[k++]	=	a[j++];
}

for(i=r;	i	>=	p;	i--)
{
a[i]	=	b[--k];								//	copying	back	the	sorted	list	to	a[]
}	

}

Complexity	:

Worst	case	performance O(n log	n)

Best	case	performance
O(n log	n)	typical,

O(n)	natural	variant

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

32

Average	case	performance O(n log	n)

Worst case	space	complexity O(n)	auxiliary

8. Heap	Sort	:

Heap	Sort	is	one	of	the	best	sorting	methods	being	in-place	and	with	no	quadratic	worst-
case	scenarios.	Heap	sort	algorithm	is	divided	into	two	basic	parts	:

∑ Creating	a	Heap	of	the	unsorted	list.
∑ Then	a	sorted	array	is	created	by	repeatedly	removing	the	largest/smallest	element	

from	the	heap,	 and	 inserting	 it	 into	 the	array.	The	heap	 is	 reconstructed	after	each	
removal.

What	is	a	Heap	?

Heap	is	a	special	tree-based	data	structure,	that	satisfies	the	following	special	heap	properties	
:

1. Shape	Property	:Heap	data	structure	is	always	a	Complete	Binary	Tree,	which	means	
all	levels	of	the	tree	are	fully	filled.

2. Heap	Property	: All	nodes	are	either	[greater	than	or	equal	to] or	[less	than	or	equal	
to] each	of	its	children.	If	the	parent	nodes	are	greater	than	their	children,	heap	is	called	
a	Max-Heap,	and	if	the	parent	nodes	are	smalled	than	their	child	nodes,	heap	is	called	
Min-Heap.

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

33

How	Heap	Sort	Works

Initially	 on	 receiving	 an	 unsorted	 list,	 the	 first	 step	 in	 heap	 sort	 is	 to	 create	 a	 Heap	 data	
structure(Max-Heap	or	Min-Heap).	Once	heap	is	built,	the	first	element	of	the	Heap	is	either	
largest	or	smallest(depending	upon	Max-Heap	or	Min-Heap),	so	we	put	the	first	element	of	
the	heap	in	our	array.	Then	we	again	make	heap	using	the	remaining	elements,	to	again	pick	
the	first	element	of	the	heap	and	put	it	into	the	array.	We	keep	on	doing	the	same	repeatedly	
untill	we	have	the	complete	sorted	list	in	our	array.

In	 the	below	algorithm,	 initially	heapsort() function	 is	 called,	which	calls	buildheap() to	
build	heap,	which	inturn	uses	satisfyheap() to	build	the	heap.

Program	for	Heap	Sort:
/*		Below	program	is	written	in	C++	language		*/

void	heapsort(int[],	int);
void	buildheap(int	[],	int);
void	satisfyheap(int [],	int,	int);

void	main()
{
int	a[10],	i,	size;
cout	<<	"Enter	size	of	list";				//	less	than	10,	because	max	size	of	array	is	10
cin	>>	size;
cout	<<	"Enter"	<<	size	<<	"elements";
for(i=0;	i	<	size;	i++)
{
cin	>>	a[i];
}
heapsort(a,	size);
getch();
}

void	heapsort(int	a[],	int	length)

34

{
buildheap(a,	length);
int	heapsize,	i,	temp;
heapsize	=	length	- 1;
for(i=heapsize;	i	>=	0;	i--)
{
temp	=	a[0];
a[0]	=	a[heapsize];
a[heapsize]	=	temp;
heapsize--;
satisfyheap(a,	0,	heapsize);
}
for(i=0;	i	<	length;	i++)
{
cout	<<	"\t"	<<	a[i];
}
}

void	buildheap(int	a[],	int	length)
{
int	i,	heapsize;
heapsize	=	length	- 1;
for(i=(length/2);	i	>=	0;	i--)
{
satisfyheap(a,	i,	heapsize);
}	
}

void	satisfyheap(int	a[],	int	i,	int	heapsize)
{
int	l,	r,	largest,	temp;
l	=	2*i;
r	=	2*i	+	1;
if(l	<=	heapsize	&&	a[l]	>	a[i])
{
largest	=	l;
}
else
{
largest	=	i;
}
if(r	<=	heapsize	&&	a[r]	>	a[largest])
{
largest	=	r;
}
if(largest	!=	i)
{
temp	=	a[i];
a[i]	=	a[largest];
a[largest]	=	temp;
satisfyheap(a,	largest,	heapsize);

35

}
}

Complexity	:

Worst	case	performance

Best	case	performance

Average	case	performance

Worst	case	space	complexity auxiliary

ÿ Complexity	Comparison	o	Sorting	Techniques:

Technique Time
Sort Average Best Worst Space Stability Remarks
Bubble	
sort

O(n^2) O(n^2) O(n^2) Constant Stable Always	use	a	
modified	
bubble	sort

Selection	
Sort

O(n^2) O(n^2) O(n^2) Constant Stable Even	a	
perfectly	
sorted	input	
requires	
scanning	the	
entire	array

Insertion	
Sort

O(n^2) O(n) O(n^2) Constant Stable In	the	best	
case	(already	
sorted),	
every	insert	
requires	
constant	
time

Heap	Sort O(n*log(n)) O(n*log(n)) O(n*log(n)) Constant Instable By	using	
input	array	
as	storage	for	
the	heap,	it	is	
possible	to	
achieve	
constant	
space

Merge	Sort O(n*log(n)) O(n*log(n)) O(n*log(n)) Depends Stable On	arrays,	
merge	sort	
requires	O(n)	
space;	on	
linked	lists,	
merge	sort	
requires	
constant	
space

Quicksort O(n*log(n)) O(n*log(n)) O(n^2) Constant Stable Randomly	
picking	a	
pivot	value	

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/heapsort.html
http://www.cprogramming.com/tutorial/computersciencetheory/mergesort.html
http://www.cprogramming.com/tutorial/computersciencetheory/quicksort.html

36

(or	shuffling	
the	array	
prior	to	
sorting)	can	
help	avoid	
worst	case	
scenarios	
such	as	a	
perfectly	
sorted	array.

ÿ Representation	o	Array:

Array	definition:-
Array	is	 linear,	homogeneous	data	structures	whose	elements	are	stored	in	contiguous	

memory	locations.
Arrays	are	subscripted	variables	stored	in	contiguous	memory	locations.

Types	of	Arrays:
One-dimensional	Array or	linear	array: requires	only	one	index	to	access	an	

element.	

Two-Dimensional	Array: requires	two	indices	to	access	an	element.

Multidimensional	Array: requires	two	or	more	indices	to	access	an	element.

Size	of	linear	array:	size=ub-lb-1
Where	ub	represents	upper	bound	or	largest	index	of	array,

lb	represents	lower	bound	or	smallest	index	of	array.

Indices	of	array	are	integer	numbers.

In	C index	starts	from	0,that	is	the	smallest	index	of	array	is	0.

In	C	index	are	written	in	brackets	[].

Representation	of	One-dimensional	array	in	memory:-

Suppose	name	of	linear	array	is	arr	and	it	has	5	elements.	Then	its	elements	are	represented	
as:

arr

0 1 2 3 4	
arr[0],	 arr[1], arr[2],	 arr[3], arr[4].

Address	calculation	in	one-dimensional	Array:-

Since	array	elements	are	stored	in	contiguous	memory	locations,	the	computer	needs	
to	not	to	know	the	address	of	every	element	but	the	address	of	only	first	element.	The	address	

37

of	first	element	is	called	base	address	of	array.	Given	the	address	of	first	element,	address	of	
any	other	element	is	calculated	using	the	formula:-

Loc	(arr	[k])	=base	(arr)	+	w	*	k	(in	C)

Where	k	is	the	index	of	array	whose	address	we	want	to	calculate	and	w	is	the	number	
of	bytes	per	storage	location	of	for	one	element	of	array.
If	not	given	explicitly,	we	take	index	set	as	1,2,3,4,……n	where	n	the	upper	bound	of	the	array.
Example:- Suppose	that	array	arr	is	declared	as	integers	with	size	20	and	its	first	element	is	
stored	at	address	1000.	Calculate	the	address	of	4th element	of	array	when	the	index	of	the	
array	starts	from	0.

Here,	base	address=1000,	k=3,	w=2.
Thus,	loc(arr[3])=1000	+	2*3=1006

Representation	of	two	dimensional	array	in	memory:
Suppose	name	of	two-dimensional	array	is	mat	and	it	has	3	rows	and	4	columns.	Then	

its	elements	are	represented	as:
mat[0][0], mat[1][0], mat[2][0]
mat[0][1], mat[][1],	 mat[2][1]
mat[0][2],	 mat[1][2],	 mat[2][2]	

mat
0 1 3

0

1

2

Elements	of	two-dimensional	arrays	are	stored	in	two	ways:-

(ii) Column	 major	 order:	 Elements	 are	 stored	 column	 by	 column,	 i.e.	 all	
elements	of	first	column	are	stored,	and	then	all	elements	of	second	column	
stored	and	so	on.	

mat[0][0]

Column	0

mat[1][0]

mat[2][0]

38

mat[0][1]

Column 1

mat[1][1]

mat[2][1]

mat[0][2]

Column	2

mat[1][2]

mat[2][2]

(iii) Row	major	order:	Elements	are	stored	row	by	row,	i.e.	all	elements	of	
first	row	are	stored,	and	then	all	elements	of	second	row	stored	and	
so	on.

mat[0][0]

Row	0

mat[0][1]

mat[0][2]

mat[1][0]

Row	1

mat[1][1]

mat[1][2]

39

mat[2][1]

mat[2][0]

Row	2

mat[2][2]

Ordered	List:
A	list	in	which	the	elements	are	arranged	so	that	the	key	values	are	placed	in	ascending	

or	descending	sequence.
Ordered	Lists	are	maintained	in	sequence	according	to	the	data	or,	when	available	a	key	that	
identifies	the	data.

Sparse	Matrices:-
An	mxn	matrix	A	is	said	to	be	sparse	if	many	of	its	elements are	zero.	A	matrix	that	is	

not	sparse	is	called	dense	matrix.	It	is	not	possible	to	define	an	exact	boundary	between	dense	
and	sparse	matrices.	

Q:12	Write	Short	note	on	Abstract	Data	Structure:

Notice	that	your	code	may	be	understood	and	augmented	by	third	parties	in	your	absence.	
Even	if	you	flood	your	code	with	documentation,	its	readability	is	not	ensured.	An	important	
thing	you	require	is	a	design	document.	That	is	not	at	the	programming	level,	but	at	a	more	
abstract	level.	

Data	abstraction	is	the	first	step.	A	problem	is	a	problem	of	its	own	nature.	It	deals	with	
input	and	output	in	specified	formats	not	related	to	any	computer	program.	For	example,	a	
weather	forecast	system	reads	gigantic	databases	and	outputs	some	prediction.	Where	is	C	
coming	 in	 the	 picture	 in	 this	 behavioral	 description?	 One	 can	 use	 any	 other	 computer	
language,	perhaps	assembly	languages,	or	even	hand	calculations,	to	arrive	at	the	solution.	

What	is	an	abstract	data	type?

An	abstract	data	type	(ADT)	 is	an	object	with	a	generic	description	 independent	of	
implementation	 details.	 This	 description	 includes	 a	 specification	 of	 the	 components	 from	
which	the	object	is	made	and	also	the	behavioral	details	of	the	object.	Instances	of	abstract	
objects	include	mathematical	objects	(like	numbers,	polynomials,	integrals,	vectors),	physical	
objects	(like	pulleys,	floating	bodies,	missiles),	animate	objects	(dogs,	Pterodactyls,	Indians)	
and	objects	(like	poverty,	honesty,	 inflation)	that	are	abstract	even	in	the	natural	language	
sense.	You	do	not	see	C	in	Pterodactyls.	Only	when	you	want	to	simulate	a	flying	Pterodactyl,	
you	would	think	of	using	a	graphics	package	in	tandem	with	a	computer	language.	Similarly,	
inflation	is	an	abstract	concept.	When	you	want	to	model	it	and	want	to	predict	it	for	the	next	
10	years,	you	would	think	of	writing	an	extrapolation	program	in	C.	

40

Specifying	only	the	components	of	an	object	does	not	suffice.	Depending	on	the	problem	you	
are	going	to	solve,	you	should	also	 identify	 the	properties	and	behaviors	of	 the	object	and	
perhaps	additionally	the	pattern	of	interaction	of	the	object	with	other	objects	of	same	and/or	
different	types.	Thus	in	order	to	define	an	ADT	we	need	to	specify:	

∑ The	components	of	an	object	of	the	ADT.	
∑ A	set	of	procedures	that	provide	the	behavioral	description	of	objects	belonging	to	the	

ADT.	

There	may	be	thousands	of	ways	in	which	a	given	ADT	can	be	implemented,	even	when	the	
coding	language	remains	constant.	Any	such	implementation	must	comply	with	the	content-
wise	and	behavioral	description	of	the	ADT.	

Examples

∑ Integers: An	 integer	 is	 an	 abstract	 data	 type	 having	 the	 standard	 mathematical	
meaning.	 In	 order	 that	 integers	may	 be	 useful,	we	 also	 need	 to	 specify operations	
(arithmetic	operations,	gcd,	square	root	etc.)	and	relations	(ordering,	congruence	etc.)	
on	integers.	

∑ Real	 numbers: There	 are	mathematically	 rigorous	ways	 of	 defining	 real	 numbers	
(Dedekind	cuts,	 completion	 of	 rational	 numbers,	 etc).	 To	 avoid	 these	mathematical	
details,	let	us	plan	to	represent	real	numbers	by	decimal	expansions	(not	necessarily	
terminating).	Real	numbers	satisfy	standard	arithmetic	and	other	operations	and	the	
usual	ordering.	

∑ Complex	numbers: A	complex	number	may	be	mathematically	treated	as	an	ordered	
pair	of	real	numbers.	An	understanding	of	real	numbers	is	then	sufficient	to	represent	
complex	numbers.	However,	 the	 complex	arithmetic	 is	markedly	different	 from	the	
real	arithmetic.	

∑ Polynomials with	 real	 (or	 complex	 or	 integer	 or	 rational)	 coefficients	 with	 the	
standard	arithmetic.	

∑ Matriceswith	real	(or	complex	or	integer	or	rational)	entries	with	the	standard	matrix	
arithmetic	(which	may	include	dimension,	rank,	nullity,	etc).	

∑ Sets are	unordered	collections	of	elements.	We may	restrict	our	study	to	sets	of	real	
(or	 complex)	 numbers	 and	 talk	 about	 union,	 intersection,	 complement	 and	 other	
standard	operations	on	sets.	

∑ A	multiset is	an	unordered	collection	of	elements	(say,	numbers),	where	each	element	
is	allowed	to	have	multiple	occurrences.	For	example,	an	aquarium	is	a	multiset	of	fish	
types.	One	can	add	or	delete	fishes	to	or	from	an	aquarium.	

∑ A	book is	an	ADT	with	attributes	like	name,	author(s),	ISBN,	number	of	pages,	subject,	
etc.	You	may	think	of	relations	like	comparison	of	difficulty	levels	of	two	books.	

Examples

∑ Integers: C	provides	so	many	integer	variables	and	still	I	have	to	write	my	integers.	
You	may	have	to.	For	most	common-place	applications	C's	built-in	integer	data	types	
are	 sufficient.	 But	 not	 always.	 Suppose	 my	 target	 application	 is	 designing	 a	
cryptosystem,	where	one	deals	with	very	big	 integers,	 like	 those	of	bit-sizes	one	 to	
several	 thousand	 bits.	 Our	 C's	 maximum	 integer	 length	 is	 64	 bits.	 That	 is	 grossly	
inadequate	to	address	the	cryptosystem	designer's	problem.	ANSI	standards	dictate	
use	of	integers	of	length	at	most	32	bits,	which	are	even	poorer	for	cryptography,	but	

41

at	 the	minimum	portable	 across	 platforms.	 At	 any	 rate,	 you	need	 your	 customized	
integer	data	types.	

A	common	strategy	is	to	break	big integers	into	pieces	and	store	each	piece	in	a	
built-in	 data	 type.	 To	 an	 inexperienced	 user	 breaking	 with	 respect	 to	 the	 decimal	
representation	seems	easy	and	intuitive.	But	computer's	world	is	binary.	So	breaking	
with	respect	to	the	binary	representation is	much	more	efficient	in	terms	of	space	and	
running	time.	So	we	plan	to	use	an	array	of	unsigned	long variables	to	store	the	bits	of	
a	big	integer.	Each	such	variable	is	a	32-bit	word	and	is	capable	of	storing	32	bits	of	a	
big	integer.	Therefore,	if	we	plan	to	work	with	integers	of	size	no	larger	than	10,000	
bits,	we	require	an	array	of	size	no	more	than	313	unsigned	long variables.	The	zeroth	
location	of	the	array	holds	the	least	significant	32	bits	of	a	big	integer,	the	first	location	
the	next	32	bits,	and	so	on.	Since	all	integers	are	not	necessarily	of	size	10,000	bits,	it	
is	also	necessary	to	store	the	actual	word-size	of	a	big	integer.	Finally,	if	we	also	plan	
to	 allow	 negative	 integers,	 we	 should	 also	 reserve	 a	 location	 for	 storing	 the	 sign	
information.	So	here	is	a	possible	implementation	of	the	big	integer	data	type.	

typedef	struct	{
unsigned	long	words[313];
unsigned	int	wordSize;
unsigned	char	sign;

}	bigint;

This	 sounds	okay,	 but	 has	 an	 efficiency	problem.	When	you	pass	 a	bigint data	 to	 a	
function,	 the	 entire	 words array	 is	 copied	 element-by-element.	 That	 leads	 to	
unreasonable	overheads	during	parameter	passing.	We	can	instead	use	an	array	of	315	
unsigned	long variables	and	use	its	313-th	and	314-th	locations	to	store	the	size	and	
sign	 information.	 The	 first	 313	 locations	 (at	 indexes	 0	 through	 312)	 represent	 the	
magnitude	of	the	integer	as	before.	

#define	SIZEIDX	313
#define	SIGNIDX	314
typedef	unsigned	long	goodbigint[315];

Now	goodbigint is	a	simple	array	and	so	passing	it	to	a	function	means	only	a	pointer	
is	passed.	Quite	efficient,	right?	

These	big	integers	are	big	enough	for	cryptographic	applications,	but	cannot	represent	
integers	bigger	than	big,	for	example,	integers	of	bit-size	millions	to	billions.	Whenever	
we	use	static	arrays,	we	have	to	put	an	upper	limit	on	the	size.	If	we	have	to	deal	with	
integers	of	arbitrary	sizes	(as	long	as	memory	permits),	we	have	no	option	other	than	
using	dynamic	memory	and	allocate	the	exact	amount	of	memory	needed	to	store	a	
very	big	integer.	But	then	since	the	maximum	index	of	the	dynamic	array	is	not	fixed,	
we	have	to	store	the	size	and	sign	information	at	the	beginning	of	the	array.	Thus	the	
magnitude	of	the very	big	integer	is	stored	starting	from	the	second	array	index.	This	
leads	to	somewhat	clumsy	translation	between	word	indices	and	array	indices.	

#define	SIZEIDX	0
#define	SIGNIDX	1
typedef	unsigned	long	*verybigint;

42

A	better	strategy	is	to	use a	structure	with	a	dynamic	words	pointer.	

typedef	struct	{
unsigned	long	*words;
unsigned	int	size;
unsigned	char	sign;

}	goodverybigint;

So	you	have	 to	pay	a	hell	 lot	of	attention,	when	 implementation	 issues	come.	Good	
solutions	come	from	experience	and	innovativeness.	

Being	able	to	define	integers	for	a	variety	of	applications	is	not	enough.	We	need	to	do	
arithmetic	(add,	subtract,	multiply	etc.)	on	these	integers.	It	is	beyond	the	scope	of	this	
elementary	course	to	go	into	the	details	of	these	arithmetic	routines.	It	suffices	here	
only	 to	 highlight	 the	 difference	 between	 abstract	 specifications	 and	 application-
specific	implementations.	Both	are	important.	

A	complete	example	:	the	ordered	list	ADT

Let	us	now	define	a	new	ADT	which	has	not	been	encountered	earlier	in	your	math	courses.	
We	call	this	ADT	the	ordered	list.	It	is	a	list	of	elements,	say	characters,	in	which	elements	are	
ordered,	i.e.,	 there	is	a	zeroth	element,	a	first	element,	a	second	element,	and	so	on,	and	in	
which	 repetitions	 of	 elements	 are	 allowed.	 For	 an	 ordered	 list	 L,	 let	 us	 plan	 to	 have	 the	
following	functionality:	

L	=	init();

Initialize	L to	an	empty	list.	

L	=	insert(L,ch,pos);

Insert	the	character	ch at	position	pos in	the	list	L and	return	the	modified	list.	Report	
error	if	pos is	not	a	valid	position	in	L.	

delete(L,pos);

Delete	the	character	at	position	pos in	the	list	L.	Report	error	if	pos is	not	a	valid	position	
in	L.	

isPresent(L,ch);

Check	if	the	character	ch is	present	 in	the	list	L.	 If	no	match	is	 found,	return	-1,	else	
return	the	index	of	the	leftmost	match.	

getElement(L,pos);

Return	the	character	at	position	pos in	the	list	L.	Report	error	if	pos is	not	a	valid	position	
in	L.	

print(L);

Print	the	list	elements	from	start	to	end.	

43

We	will	 provide	 two	 complete	 implementations	 of	 this	ADT.	We	assume	 that	 the	 element	
positions	are	indexed	starting	from	0.	

Implementation	using	static	arrays:

Let	us	restrict	the	number	of	elements	in	the	ordered	list	to	be	<= 100.	One	can	then	use	an	
array	of	characters	of	this	size.	Moreover,	one	needs	to	maintain	the	current	size	of	the	list.	
Thus	the	list	data	type	can	be	defined	as:	

#define	MAXLEN	100

typedef	struct	{
int	len;
char	element[MAXLEN];

}	olist;
Let	us	now	implement	all	the	associated	functions	one	by	one.	

olist	init	()
{
olist	L;

L.len	=	0;
return	L;

}

olist	insert	(olist	L	,	char	ch	,	int	pos)
{
int	i;

if	((pos	< 0)	||	(pos	>	L.len))	{
fprintf(stderr,	"insert:	Invalid	index	%d\n",	pos);
return	L;

}
if	(L.len	==	MAXLEN)	{
fprintf(stderr,	"insert:	List	already	full\n");
return	L;

}
for	(i	=	L.len;	i	>	pos;	--i)	L.element[i]	=	L.element[i-1];
L.element[pos]	=	ch;
++L.len;
return	L;

}

olist	delete	(olist	L	,	int	pos)
{
int	i;

if	((pos	<	0)	||	(pos	>=	L.len))	{
fprintf(stderr,	"delete:	Invalid	index	%d\n",	pos);
return	L;

}

44

for	(i	=	pos;	i	<=	L.len	- 2;	++i)	L.element[i]	=	L.element[i+1];
--L.len;
return	L;

}

int	isPresent	(olist	L	,	char	ch)
{
int	i;

for	(i	=	0;	i	<	L.len;	++i)	if	(L.element[i]	==	ch)	return	i;
return	-1;

}

char	getElement	(olist	L	,	int	pos)
{
if	((pos	<	0)	||	(pos	>=	L.len))	{
fprintf(stderr,	"getElement:	Invalid	index	%d\n",	pos);
return	'\0';

}
return	L.element[pos];

}

void	print	(olist	L)
{
int	i;

for	(i	=	0;	i	<	L.len;	++i)	printf("%c",	L.element[i]);
}

Here	is	a	possible	main() function	with	these	calls.	

int	main	()
{
olist	L;

L	=	init();
L	=	insert(L,'a',0);
printf("Current	list	is	:	");	print(L);	printf("\n");
L	=	insert(L,'b',0);
printf("Current	list	is	:	");	print(L);	printf("\n");
L	=	delete(L,5);
printf("Current	list	is	:	");	print(L);	printf("\n");
L	=	insert(L,'c',1);
printf("Current	list	is	:	");	print(L);	printf("\n");
L	=	insert(L,'b',3);
printf("Current	list	is	:	");	print(L);	printf("\n");
L	=	delete(L,2);
printf("Current	list	is	:	");	print(L);	printf("\n");

1

TGPCET/IT

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

Department of Information Technology

‘UNIT	–II NOTES
Subject:- Algorithm	&	Data	Structures	 Semester:- IV

Q.1. What is a stack? What are the various operations associated with
stack?
Ans. Stack : It is a linear data structure. A stack is a list of elements in
which an element may be inserted or deleted only at one end, called the ‘top of
the stack. The last item to be added or inserted to the stack is the first to be
removed or deleted. So, stacks are also called as Last in First Out (i.e. LIFO),
type of data structure.
Two basic operations are associated with the stack. They are:
1. PUSH : To insert an element into a stack.
2. POP : To delete or remove an element from the stack.

Q.2. Explain how stacks are represented using arrays.
Ans. Stacks are represented in computers, by means of a linear linked list or a
linear array.
in representation by an array S. a pointer variable TOP, is used to hold the
location of the top element of the stack. A variable N is used to give the
maximum number of elements that can be held by the stack.
TOP=5 N=lO

Q.3. Give the representation of stack in C.

Syllabus
Stacks	 and	 Queue:	 Definition	 and	 Terminology,	 Concept	 of	 stack,	 Stack	
implementation,	 Operation	 on	 stack,	 Algorithms	 for	 push	 and	 pop,	 Implementing	
stack	using	pointers,	Application	of	 stacks,	Evaluation	of	polish	notation,	multiple	
stack.
Queue:	Queue	as	ADT	 Implementation	 of	queue,	Operation	on	queue,	Limitations,	
Circular	 queue,	 Double	 ended	 queue	 (dequeue),	 Priority	 queue,	 Application of	
queues,multiple	queues.

2

Ans. in Pascal, stack is represented using arrays. An array has a fixed number
of elements whereas a stack is a dynamic object whose size is always
changing as items are popped or pushed.
By declaring an array with a large range, it can be used as a stack. During
operations the stack grows and shrinks in the space reserved for it. One end of
the array is used as a fixed bottom of the stack and the other end s a constantly
changing top. A variable TOP is used to keep a track of the current position of
the top of stack.

A stack is represented in C as:
#define MAX lO()
struct stack

(
mt item [MAXI;

mt top: l....MAX;

) s;
The stack is initialized before using.

Q.4. Explain push and write procedure for it.
Ans. Push : As element is inserted into the stack, the value of the top is
incremented by I. Before adding, it is necessary to check the value of the top,
If it is maximum, then the stack is full and then it is not possible to push any
clement onto the stack.
The procedure is as given below:

push(struct stack s, mt x)

I
if (s.top = MAX)
printfCStackfull’)
else

I
s.top=s.top+ 1;
s.item [s.topl = x;

)
)
Q.5. Explain pop and write the procedure for it.
Ans. Pop: The deletion of an item takes place from the top. If top = 0, then the
stack is empty and any item cannot be deleted from it. After deleting the
element from the stack, the value of the top is decremented by 1. So, the next

3

element becomes the top,
The procedure is as given:
pop(struct stack s);

mt x : integer;
if(s..top = 0)
printfC’Stack is Empty’); else

{
x = s.item (s.topl;
s.top = s.top —1;

I
I

Q.6. Write short notes on implementation of multiple stack in an array.
OR Discuss in detail the terms multiple stacks and queues.
(W-031
Ans. Multiple stack : A single stack is represented using arrays, S(l..n]. If there are 2
stacks, then also array S is used. SIt] is used as the bottom of stack 1 and Sin] as
bottom of stack2 grows towards left. If size of stackl is n1 and that of stack2 is n2,
then
= n + ‘2 for stacki arid stack2.

n—2 n—I n

1 2 3
stack 2

stack 1
As a single dimensional array has only two fix points s(1J and s[n] and a stack
requires a fixed point for its bottom—most element. So to represent more than
2 stacks in memory in sequential order, the available memory is divided into
segments and each segment is allocated to each stack.
If the size of each stack is known, then the segments can be divided in
proportion to the size of stack. If size is not known, the segments are divided
into equal sizes.
A separate array B is used to store the number of stacks. B[iJ stores the
number of stacks i. It points to a position one less than the position in s for the
bottom—most element of the stack 1. T[il points to the top—most element of
stack 1.
V 1 2 [rn/n] 2[m)nJ m
bill b[21 b[3] b[b+ 11
t[I] t[2] t[3l

4

else

{
x = s.item (s.topl;
s.top = s.top —1;

Initial configuration for empty stacks:
The initial segment is given by:
B[i]=T[i]=(mln)(i—l) , 1in
Any stack i can grow from b[i] + 1 to b[i + 1].
Similar implementation for multiple queue is also possible.
Q.7. Two stacks are to be represented in an array N[1— r]. Write the
procedure to add (1, x) and delete (I, x) from the 1th

stack. IS-63j
Ans. The procedure to add elements ith stack is given as:

add(mt I, mt x)

f
if(t[i] = b[i + 1])
printf(“stackfu II II);

else

{
t[i] = t[i] + i;
v[t[i]] =

I
I
The procedure to delete the topmost element of stack i is as given:

delete(int 1, mt x)

(
if(t [iJ = b[i])
printfCstack empty”);
else

{
x=v[t[i]];
t[i]=t[i]— 1;

I
I
The stack full condition does not mean that all n locations of s are filled. There
may be lot of unused or empty space between stacks iandi+1.

5

Q.8. Explain the terms “Overflow” and “UnderfioW” with respect to
STACK.
Ans. Stack is a non-linear data tructure in which insertion and deletion can be
performed at the same end.
The stack is rnplemented using array, then the array have some finite numbers of
location. When we insert element into stack and if the top will reach at position of
last location of array means all location, of array are full, then overflow will occur.
When we delete element from stack and if the stack does not have any element,
means (top=O), then the underfiow condition may occur.
QUEUE:
In Pascal, queue are declared as:
const maxq = 100;
type queue = record
item: array [1.. maxq] of integer
front, rear: 0. .maxq
end
var q : queue
Front rear

Q.9. Write a short note on Queue.
Ans. A queue is a linear list of elements in which deletion can take place at
only one end, called as front and insertion can take place at the other called as
rear. Queues are also called as First In First Out (FIFO) type of data structure
because of the order in which they leave the queue.
Queues are represented in the memory by linear array. Two pointer variables
are used: FRONT contains the location of the front element of the queue and
REAR contains the location of the rear element. If FRONT = REAR, then the
queue is empty.

Q.1O. Write a procedure to insert au element in queue.
Ans. When an element is inserted into the queue, the value of REAR is
incremented by 1 i.e. REAR := REAR + 1.
The procedure to add an element to the queue is given by:
addq(int x)

I
if(q.rear = MAXQ)
printf(“Queuefull”);
else

I
q.rear=q.rear+ 1;
q.item (q.rearl

6

)
)
Q.11. Write a procedure to delete an element from the queue.
Ans. When an element is deleted from the queue, the value of FRONT is
incremented by 1, Ic.,
FRONT = FRONT + 1
The procedure to delete an item from a queue is given as deleteq(int x)

I
if(q.front == q.rear)
printf(”Queue empty”);
else

I
x = q.item [q.front];
q.front = q.front + I;

)
)

Q.12. What are FIFO (First-un-First-out) and LIFO (Lasti n-First-out) lists.
Discuss atleast three differences between them.
Ans. FIFO stands for first-in-first-out. These lists are the one in which the
element which is inserted first is taken out first. Queue is based on FIFO list.
FIFO list are generally used for batch processing system.
LIFO stands for lat-in-first-out. These lists are the ones in which the element
which is inserted last is taken out first. Stack is implemented using LIFO list.
LIFO list are generally used for recursion.

Q.13. Define circular queue.
Ans. A more efficient queue representation is obtained by regarding the array Q(1 :
n) as circular. It now becomes more Convenient to declare the array as Q(O: n —1).
When rear = n —1, the next element is entered at Q(O: n —I). When rear = n —1, the
next element is entered at Q(O) in case that spot is free. Front will always point one
position counterclockwise from the first element in the queue. Again front = rear if
and only if the queue is empty. Initially, we have front = rear = 1. Figure illustrates
some of the possible configurations for a circular queue containing the four
elements ii —J4withn>4.

FIFO LIFO

1) FIFO stands for first-in-first- out. LIFO stands for last-in-first out.
.

7

2) Here the element which is inserted
first is taken out first.

Here the element which is inserted
last is taken out first.

3) Queue is implemented using FIFO
list.

Stack is implemented using LIFO
list.

4) FIFO list are used for batch
processing.

LIFO list are used for recursion.

(4)

(n—4)

front • n-4, rear
Circular qucuc of ., clcmenta nd four jc** 31. J2. J3. 14
In order to add an element it will be necessary to move rear one position clockwise
i.e.
ifrear=n—l then rear—O
else rear <— rear + 1
using the module operator which computes remainders, this is first rear — (rear + 1)
mod n. Similarly, it will be necessary to move front one position clockwise each
time a deletion is made. Again, using the modulo operation, this can be
accomplished by front — (front + I) mod n. An examination of the algorithms
indicates that addition and deletion can now be carried out in a fixed amount of time
or 0(1).
Q.14. Write a procedure to implement a queue using

circular link list. IS-031
Ans. / Program to implement a queue
using circular linked list */

include “alloc.h”
struct node

{
mt data
struct node link;

I
main ()
{

‘.4)

(n-3)

(3

8

(Q) (n—I)
front ‘0; rear ‘4

Cr. —3) (n —2)’

(0) (n—I)

struct node *front, *rear;

front = rear = NULL;
addcirq(&fronc, &rear, 10);
addcirq(&front, &rear, 11);
addcirq(&front, &rear, 12);
addcirq(&front, &rear, 13);
addcirq(&front, &rear, 14);
addcirq(&front, &rear, 15);
clrscr();
cirq-display (front);
delcirq (&front, &rear);
delcirq (&ront, &rear);
pnntf (“‘n\n After deletion : \n”);
cirq-display (front);

I
/* adds a new element at the end of queue /

addcirq (struct node **f, structnode.**r, mt item)

{
struct node *q;
/ create new node /
q = malloc (size of (struct node);
q —+ data = item;
1* if the queue is empty /
jf(*f NULL)
else
(*r) ., link = q;
*rq
(*r) link =

/*removes an element from front of queue I delcirq (struct node **f, struct node r)

(
struct node *q;

mt item,
)* if queue is empty /
if (f = NULL)

9

printf (‘queue is empty”); else

I
if(f= * r)

(
item = (0 - data; free (f);
•f= NULL;
r-NULL

)
else

I
/ delete the node 1
q*f;
item = q —p data;
f=(’f) —,link;
(r) —.+ link =

free (q);
return (item);

)
I
1 displays whole of the queue’!
cirq-display (struct node f)

I
struct node *q = f, p = NULL;
pnntf (“\nfront — —> “);

I’ traverse the entire linked list 1
while (q!= p)

I
printf (“%2d”, q —‘ data); q=q — link;
p=f

I
printf(” _>.....frontu);

I I

Q.15. Write a procedure to insert an item in circular queue.
OR Write a function which will implement circular queue
using array. (W-031
Ans.
qinsert(int x)

(

10

if(((q.front=1)&&(q.rear = maxq)) II (q.front = q.rear + 1)) prinf(”Queue is full”);
if(q.front = q.rear)

I
q.front= I;
q.rear= I;

)
else
q.rear = (q.rear + 1) mod maxq;
q.item [q.rearj = x;

I
Q.16. Write a procedure to delete an item from a circular queue.
Ans.
qdelete (irn x)

I
if(q.front = NULL)
printf(”Queue is Empty”);
if(q.front = rear)

I
qfront = NULL;
q.rear = NULL;

)
else
q.fron = (q.front + 1) mod n;
x = q.item[q.frontj;

I

Q.17. Distinguish between STACK and QUEUE. (mm. four

Stack
I) Stack is non-linear data structure in which insertion and deletion can be
done from top i.e. from one end only.

Queue
1) Queue is non-linear data structure in which insertion and deleion can be
done from rear and front.

Q.18. Give the difference between plain queue and circular queue.
Ans. The main difference between two queues is the method to check the full and
empty conditions of the queue. In circular queue the same method is used to check
whether the queue is full or empty i.e. front = rear.
The another difference with plain queue is, if the size of the queue is “n—i”, then it

11

is only possible to make use of n—I positions of the queue. Because if all the “n”
positions are used, then it will not be possible to distinguish the full and empty
conditions as front = rear.

Q.19. A double ended queue (deque) is a linear list in which additions and deletions
are made at either end. Obtain a data representation, mapping a dequeue into a one
dimensional array. Write the algorithm to add and delete elenwnts at either end of
the deque.

2) This is a first in last out
(FILO) or last in first out
(LIFO).

2) This is first in first out
(FIFO).

3) For insertion we have to check
limit of stack i.e. (top = = n)

3) For insertion, we have to check limit of
queue with rear i.e. (rear = = n)

4) For deletion we have to check (top
= = 0)

4) For deletion we have to check (front = =

rear)

5) Example, dishes arrangement
one above another.

5) Example: Line of vehicles waiting
for green signal.

Ans. It is a linear list having 2 ends, or it is a double ended queue, in which
elements can be added or removed at either end but not in the middle.
The deque can be represented using a circular array with 2 pointers LEFT and
RIGHT, which poirn to the 2 ends of dequeue.
LEFT = 2
__________ RIGHT =5
8 9 10

LEFT = 9 RIGHT =1

I 2 3 4 5 6 7 8 9 10 II
There are 2 types of deque : an input restricted deque & an output restricted deque.
An input restricted deque is a deque which allows insertion at only one end and
deletion at both the ends of the list.
The algorithm to insert an element in a deque is given as:
procedure DQINSERT (DQ, RIGHT, LEFT, X)
1. IfLEFTJ&RIGHTNthen
overflow, return
2. if INSERT ON LEFT then

12

LEFT := LEFT —1
DQ(LEFT) := X
else
RIGHT := RIGHT + 1
DQ(RIGHT) := X
endif
3. RETURN.
The algorithm to delete an element from deque is given as:
procedure DQDELETE (DQ, RIGHT, LEFT, X)
1. if LEFT = NULL & RIGHT = NULL then 2. if DELETE from LEFT then
X := DQ(LEFT);
LEFT := LEFT+ 1
else
X:=DQ(RIGHT)
RIGHT := RIGHT-i
endif
3. RETURN.
Q.20. Explain the priority queue.
OR What do you mean by a priority queue? Write a function to add an
item in a priority queue and a function to delete an element. Priority of
each and every element is stored
explicitly with every element. [S-02]
OR Explain difference between queue and priority queue in
short. l [W-03]
Ans. Priority Queue: Priority queue is a queue in which each element has
been assigned a priority and operations of insertion or deletion are done as per
the priority. For insertion, an element with higher priority is processed before any
other element with lower priority. Two elements with the same priority are
processed according to the order in which they were added to the queue.
Priority queues are represented in memory using list and arrays.
In case of representation using arrays, a separate circular queue is used for each
level of priority. Each queue has its own pair of pointers FRONT and REAR. A 2D
array is used to represent the priority queue. Each row has the same priority and the
row number denotes the priority level. FRONT[IJ and REAR[I] contain the front
and rear element of row K of queue, I is the priority number.
For deletion, the elements with higher priority is deleted first and lower next.

If two elements have same priority, then they will be deleted in the order
where they were added.

Q.21. What are the applications of stack? Explain recursion through an example.
Aim. Recursion : If a function refers itself, it is said to be a recursive function.

13

A procedure contains either a call statement to itself or a call statement to a
second procedure which again calls back to the original procedure. The
procedure is then called as a recursive procedure.
For a procedure or a function to be recursive, it must have the following 2
properties:
1. There must be a base criteria for which the subprogram does not call itself.
2. Each time a subprogram calls itself, it must be closer to the base criteria.
The subprograms with these 2 properties are said to be well defined.
A recursive solution to a problem is more expen%i’e than a non- recursive
solution, both in terms of time and space but this expense is very small in
comparison to the logical simplicity and self- documentation of a recursive
program.

Q.22. Explain the various types of expressions.
Ans. A matheniatical expression involves constants and operations.

I
2
3
4
5
6

FRONT REAR

3 4

1 3

1 1

5 3

0 0

4 4

There are 3 types of notations depending on the arrangement of operator and
operands.
1. Infix notation : The operator is placed between the
2 operands. Eg. MB, C*D, GIJ
With this notation, the knowledge of operator precedence and the use of parenthesis

14

is essential.
2. Prefix or polish notation : The operator is placed before its two operands.
+ AB, *CD, IGJ
The order in which the operations are two be performed is completely determined
by the positions of the operators and operands in the expressions. So, the need for
parenthesis and operator precedence is eliminated.
3. Postflx or Reverse Polish Notation : The operator is placed after its 2 operands.
AB+,CD,GJ!
There is no need of parenthesis to determine the order of the operations in any
arithmetic.
The arithmetic expression written in infix notation is evaluated by the computer in 2
steps. First, it converts the expression to postfix notation and then it evaluates the
postfix expression.

Q.23. Write a short note on the evaluation of postfix expression.
OR Write an algorithm to evaluate a postfix expression.
(S-02]

Ans. Suppose P is an arithmetic expression written in postfix notation. The
algorithm evaluates the expression P with the use of stack S.
It is assumed that the last character in P is #.
The algorithm is:
1. Scan P from left to right and repeat step 2 & 3 for each element of P. until ‘#‘ is
encountered.
2. If an operand is encountered, put It on stack s.

3. If an operator is encountered, then
a. Remove the 2 elements of stack, where A is the top element and B is next to
the top element.
b. Evaluate: B operator A.
c. Place the result of b back on stack S.
endif
end of step I lcxip
4. Set value of expression as the top element on stack s.
5. Exit.
Consider an expression P
P:3,6,4,_,*, 12,4,/,*
The algorithm works as:

15

Q.24. Explain how to evaluate postlix expression using operator shifting.
Ans. Consider the expression given in POSTFIX form, convert the expression
into INFIX and then solve.
El I71 ii c*
lb. I ., I , ..l , I, d.., 1, .P, T ,

Scan the expression from the L.H.S. If the operator is found then place it in between two
operands present just before the operator. For example, the first operator “—“, then place it in
between 7 and 3.
Step 1:7—3
Similar process is repeated for all the tokens present in the expression.
Step2: 12/(7—3)

0

Symbol scanned STACK

3 3

6 3, 6

4 3, 6,4

— 3, 2

* 6

12 6, 12

4 6, 12,4

r 6, 3

4’ 18

18

Siep3: 12/(73)2(1+5)*+
Step4: 12/(7_3)2*(1+5)+
Step5: l2/(7_3)+2*(1+5)
FinalresUlt 12/4+2*6=3+12=15
Step 1:3+1=4
Step2:4** 27,4—,2, *,,5,_
Step 3: 16,7—4,2, *,,5,_
Step4: 16,3*2,+,5,_

16

Step 5: 16+6,5,—
Step6:22—5= 17
Q.25. Write a program to evaluate a postfix expression. Ans. The program to
evaluate the postfix expressiOn is given as, # define MAX 25
void push(int*, int*, int);

mt pop(int 41, int’);
main()
char str[MAXI, 41s;

mt ni, n2, n3, nn;

mt stack[MAX], top = —I;
clrscrO;
printf(”\n Enter the postfix expression to be evaluated:”); gets(str);
s=str
while(*s)
{
/41slcip whitespace, if any l

if(s=’’II s’\t’)
I
s++;
continue;

