

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Session 2018-19 (Even Semester)

Eighth Semester Subject: Gaming Architecture & Programming

NOTES

1. (a) Write a program in C++ to capture the mouse and draw lines. [10 Marks]

1.Monitor for WM_LBUTTONDOWN.

2. Capture the mouse using SetCapture().

3. Save the position of the mouse relative to your window; this is usually captured in a static variable like

static POINT startingPoint={0};This is the starting point of the line.

4. Make sure you have the image information ready to re-paint on every WM_MOUSEMOVE.

5. Set a boolean flag indicating the user has started to draw a line. The simplest form of this flag is static

boolbDrawingLine=false;

 6. Monitor for WM_MOUSEMOVE. If the boolean flag is set, draw the contents of the window, then draw the

potential new line.

7. Monitor for WM_LBUTTONUP. If the boolean flag is set, draw the contents of the window, then draw the

now permanent line.

Drawing Lines with the Mouse-

When the window procedure receives a WM_LBUTTONDOWN message, it captures the mouse and

saves the coordinates of the cursor, using the coordinates as the starting point of the line. It also uses

the clipcursor function to confine the cursor to the client area during the line drawing operation.

During the first WM_MOUSEMOVE message, the window procedure draws a line from the starting point to the

current position of the cursor. During subsequent WM_MOUSEMOVE messages, the window procedure erases

the previous line by drawing over it with an inverted pen color. Then it draws a new line from the starting point to

the new position of the cursor.

The WM_LBUTTONUP message signals the end of the drawing operation. The window procedure releases the

mouse capture and frees the mouse from the client area.

 b) What are sprites and why are they used? Write a basic sprite class and explain the various

 properties in it? [10 Marks]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645607(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648383(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645616(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645608(v=vs.85).aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

CSS Sprites are a means of combining multiple images into a single image file for use on a website, to help with

performance.

Sprite may seem like a bit of a misnomer considering that you're create a large image as opposed to working with

many small ones, but the history of sprites, dating back to 1975, should help clear things up.

To summarize: the term "sprites" comes from a technique in computer graphics, most often used in video games.

The idea was that the computer could fetch a graphic into memory, and then only display parts of that image at a

time, which was faster than having to continually fetch new images. The sprite was the big combined graphic.

CSS Sprites is pretty much the exact same theory: get the image once, and shift it around and only display parts

of it. This reduces the overhead of having to fetch multiple images.

It may seem counterintuitive to cram smaller images into a larger image. Wouldn't larger images take longer to

load?

Let's look at some numbers on an actual example:

Image File Size Dimensions

canada.png 1.95KB 256 x 128

usa.png 3.74KB 256 x 135

mexico.png 8.69KB 256 x 147

That adds up to a total of 14.38KB to load the three images. Putting the three images into a single file weighs in at

16.1KB. The sprite ends up being 1.72KB larger than the three separate images. This isn't a big difference, but

there needs to be a good reason to accept this larger file... and there is!

While the total image size (sometimes) goes up with sprites, several images are loaded with a single HTTP

request. Browsers limit the number of concurrent requests a site can make and HTTP requests require a bit of

handshaking.

Thus, sprites are important for the same reasons that minifying and concatenating CSS and JavaScript are

important.

2. a) What are the phases in Game-play development? Explain the process, people involved in

 each phase? [10 Marks]

http://en.wikipedia.org/wiki/Sprite_%28computer_graphics%29
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session
https://developers.google.com/speed/docs/insights/MinifyResources

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Step One: Initial Planning

 The Genesis Gaming Design and Marketing teams will meet with the client to determine the key concepts

driving the development of a strategic game portfolio. This will address issues such as analysis of an existing

portfolio, current demographics, additional player acquisition and retention, emerging trends and profiles. We

will further discuss a range of themes, volatility levels, features, bonus games and any other aspect required for

bespoke development of a strategic portfolio. It is also important that there is an overall marketing discussion to

determine how the games can be used to further extend the client’s brand.

➢ Step Two: Technical Review

 Our Engineering Team will review documentation provided by the client to determine if there are any

technical questions or matters that need to be addressed to best develop to a specific platform.This will ultimately

save significant time in the integration process.

➢ Step Three: Initial Themes & Concept Art

 We will submit themes, names, concept art and descriptions for consideration and approval or

modification. We will then work with the client to determine portfolio development priorities. This allows

the ability to set expectations as to game delivery. The client can then implement a schedule for marketing and

release.

➢ Step Four: Features and Mathematics

 Our Game Design and Mathematics departments will determine and create unique math models that best

represent the client’s objectives as stated through the analytical process and the client’s objectives. Math will be

verified and all required percentages will be provided.

➢ Step Five: Art and Creative Design

 The Genesis Gaming Art Department will design and submit static art and design elements for approval.

Subsequently, our Animation and Music Composition teams will finalize the game. This will require the client to

provide appropriate documentation such as templates and other substantive game specifications for consistency.

Upon completion, our Demo team will provide a playable version of the game for additional review.

➢ Step Six: Integration

 Upon approval, our Engineering Department will integrate the game to the appropriate provider platform.

This requires the necessary documentation, such as an API, from the client along with server support, assuming it

http://gen-game.com/company/game-development-process/#toggleOne5
http://gen-game.com/company/game-development-process/#toggleOne18
http://gen-game.com/company/game-development-process/#toggleOne14
http://gen-game.com/company/game-development-process/#toggleOne94
http://gen-game.com/company/game-development-process/#toggleOne35
http://gen-game.com/company/game-development-process/#toggleOne60

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

is not an “asset only” delivery. We place a significant emphasis on product assurance and quality control so the

game will be very “client provider friendly.”

➢ Step Seven: Delivery

 All game assets, in the requested file formats, including all release documentation will be provided

according to contractually specified delivery requirements. Genesis Gaming is also happy to provide any material

that may be requested for the client’s marketing campaign.Since success is our mutual objective, it is our goal to

make certain that the client has all tools possible to promote the best exclusive content in the industry

 b) Describe Blue-Sky research in detail. [10 Marks]

We would all love to spend all day in front of a computer munching pizza and guzzling coffee, freely engaging

our creativity and researching whatever we like. Some companies do allow this and have active (if somewhat

variable) research departments. That’s a good thing. Research is essential to the survival of a company. It’s blue-

sky research that you have to be careful about. By definition, any technology present in games currently available

in the shops is about 18 months behind what is currently being worked on by the best design houses.

 In other words, even with the best will in the world, it is statistically unlikely that anything remotely

useful will be achieved, except a rather tragic comedy of errors. When a game project depends on the outcome of

research that has not been completed, that project is in great danger. Putting anything in the critical path for which

the outcome cannot be predicted is sheer idiocy; but for some reason—whether greed, stupidity, or just plain

ignorance—development teams seem to do this on a regular basis.

 We’re not advocating that research should be abolished; that would be a draconian measure and would

lead to further stagnation of the industry. What we are saying is that there is a time for research and a time for

development, and that the two should never overlap. Any research that is instigated should be directed research. It

should have an aim.

 An example would be the design and development of a library useful in fuzzy-logic calculations. For

sure, there would be a fair amount of research involved, but this would be research into ways of optimizing and

improving on known techniques. The blue-sky alternative would be to look for a completely new method of

doing things. Fortunately, there is very little you can imagine doing with a computer that hasn’t been already

done by someone somewhere.

 If you’re very lucky, then they have published their results. Building on the work of others, although less

glamorous, is a surer way of getting good results. Besides, if you wanted glamour then why did you become a

http://gen-game.com/company/game-development-process/#toggleOne63

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

developer? When your team is researching, set a strict time limit and stick to it ruthlessly. Run with what you

physically have at the end of the research period, not with what you are promised at the beginning.

 The time allocated for research should also factor in the time necessary to bring the research project to a

successful conclusion and with a stable and well-documented component. As the research progresses, more and

more unknowns will become quantifiable. As soon as the fundamental technique being researched is working, a

mini-schedule can be drawn up to allow for this tidying-up procedure. If the game design depends on this

research, then this is the single most critical point of the whole development.

 The project will succeed or fail—right here, right now—dependent on the success of this research project.

Obviously, this is not a good idea: Gambling the whole project on blue-sky research is a game that only the very

foolhardy or the extremely desperate would play. Remember, any safety net is better than no safety net. If no

safety net is possible, then “make-or-break” research should be avoided. It’s too much of a risk, no matter how

cool the developer doing the research is.

 Under most circumstances, releasing the product is better than canning it. Only the most cash-rich

companies will be able to afford internal research such as that used during the development processes of Die by

the Sword and Outcast. Not so many companies are able to afford the protracted development times and the risks

that are associated with research of this nature. If your company doesn’t have the sort of cash available to finance

a research department, you still have a few options open.

 The first, and most undesirable, is to avoid projects that require R&D. This is only really acceptable for

the “ticking-over-and-we-know-we’ll-only-sell-a-couple-of hundred- thousand-or-so” type of company. This is a

viable option, but it isn’t going to go anywhere fast.

 For the less-affluent companies, another option is to form links with academia. Forming a loose

relationship with universities and their computing departments can provide some good technology at some very

good prices. A company that we have worked for in Belgium used their local university as a source of cutting-

edge cryptography algorithms and regularly tested their latest algorithm designs by letting the university

researchers loose on them. The theory was that any implementations of algorithms that these university

cryptography experts couldn’t crack were pretty much guaranteed to be secure.

 If you use the “external research” system, then this also simplifies some other company decisions. Form a

liaison with academia: A good relationship means that they get to publish and you get to use their new ideas. Yet

another option is to be part of a large conglomerate, either using the Hollywood studio model or the loose alliance

model typified by Lionhead’s satellite. The latter may not be an optimal system.

 To optimize it you need to ensure that the separate development teams are aware of and able to share

each other’s technology. Also you would ideally organize collateral R&D so that two companies don’t waste time

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

on the same tasks, all of which is best achieved by appointing a resource investigation unit to interface between

all the projects in development. A loose development alliance can work, therefore, but it needs structure.

 c) Define middleware. Describe the popular 3D engines currently in use. [10 Marks]

Middleware has two separate but related meanings. One is software that enables two separate programs to

interact with each other. Another is a software layer inside a single application that allows different aspects of the

program to work together.

The most common type of middleware is software that enables two separate programs to communicate

and share data. An example is software on a Web server that enables the HTTP server to interact with scripting

engines like PHP or ASP when processing webpage data. Middleware also enables the Web server to access data

from a database when loading content for a webpage. In each of these instances, the middleware runs quietly in

the background, but serves as an important "glue" between the server applications.

Middleware also helps different applications communicate over a computer network. It enables

different protocols to work together by translating the information that is passed from one system to another. This

type of middleware may be installed as a "Services-Oriented Architecture" (SOA) component on each system on

the network. When data is sent between these systems, it is first processed by the middleware component,

then output in a standard format that each system can understand.

Middleware can also exist within a single application. For example, many 3D games use a "3D engine"

that processes the polygons, textures, lighting, shading, and special effects in the game. 3D engines are

considered middleware, since they bring different aspects of the game together.

Unreal Engine 4 is a complete suite of game development tools made by game developers, for game

developers. From 2D mobile games to console blockbusters, Unreal Engine 4 gives you everything you need to

start, ship, grow and stand out from the crowd.

Revolutionary new workflow features and a deep toolset empower developers to quickly iterate on ideas

and see immediate results, while complete C++ source code access brings the experience to a whole new level.

Unreal Engine technology powers hundreds of games as well as real-time 3D films, training simulations,

visualizations and more. Over the past 15 years, thousands of individuals and teams and have built careers and

companies around skills developed using the engine.

http://techterms.com/definition/software
http://techterms.com/definition/application
http://techterms.com/definition/server
http://techterms.com/definition/http
http://techterms.com/definition/php
http://techterms.com/definition/asp
http://techterms.com/definition/database
http://techterms.com/definition/webpage
http://techterms.com/definition/network
http://techterms.com/definition/protocol
http://techterms.com/definition/soa
http://techterms.com/definition/output

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

UNREAL ENGINE 3- Unreal Engine 3 is the complete toolset to create your own games. It is a very widely used

game engine in the industry. Unreal Engine is very versatile and has been used to create many triple A games

such as: Batman: Arkham City, Gears of War Series, Borderlands Series. Unreal Engine is one of my favorite

engines to work with. UDK is a free educational version of the engine, with commercial license available if you

want to take your project further and sell it.

CRY-ENGINE- CryEngine 3 has been used in games such as Crysis 2, Crysis 3 and Sniper: Ghost Warrior 2. Just

like Unreal Engine 3, CryEngine 3 is the complete toolset for game development. CryEngine 3 has been used as a

benchmark for visual graphics for some time and it continues to push the limit what games are capable of. One of

CryEngine's features is its ability to produce huge beautiful, highly detailed landscapes. CryEngine 3 SDK is now

on Steam and requires a monthly subscription service. You can also choose a full license but for independent

game developers and hobbyist, Steam subscription will be enough.

SOURCE ENGINE- Source Engine has been used very extensively in the modding community with hundreds if

not thousands of mods available. Source Engine is a bit outdated, yet still very powerful. It has been used to

create games such as Half Life 2 series, Counter-Strike: Source, Counter-Strike: Global Offensive, Left4Dead,

Left4Dead 2, Portal 1 and 2. Each game has a huge community behind it with new content always being released.

I love using Source Engine because of its games. You can get your hands on the engine by downloading any of

Valve's released games on Steam. If you are interested in licensing Source for commercial project go here.

UNITY 3D- Unity3D has been a very popular choice among developers. Full pledge game engine featuring

everything you would need to create full 3d or 2d games with multi-platform support right out of the box. Easy

engine to get into and begin using. Unity has a free indie version as well as commercial license version. Latest

version of Unity offers DirectX 11 support.

TORQUE 3D-Originally Torque was developed for 2001 FPS shooter, Tribes 2. Torque is an open source game

engine and has been an independent dev favorite for quiet some time. Some features include a world editor,

Collada support, per pixel dynamic lighting, normal and parallax occlusion mapping, reflections, sky system,

physX, multiple platform publishing and access to source code.

BLENDER- Blender is a free and open-source 3D content creation suite. It includes tools for animation,

compositing, 3D modeling, uv unwrapping, texturing, rigging and skinning, fluid and smoke, particle system,

physics and rendering. It also has a built-in game engine. The game engine is written in C++ and includes support

for Python scripting and OpenAL 3D sound. I like Blender because it is the only free alternative that I know of to

Maya/3dsMax as a modeling/animation software.

http://source.valvesoftware.com/licensing.php

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

NEOAXIS- Neoaxis has all the features of a modern engine such as advanced material and shading support, real-

time shadows, built-in Nvidia physX and current/next-gen rendering. It comes with complete pipeline SDK,

including a map editor. When you download the free educational version of the engine it comes with example

files for first person shooter with multiplayer support, real-time strategy and 3rd person shooter. There is a free

non-commercial SDK available to download.

3. (a) Explain in detail Cleanup process to be followed during and after the game exit. [10 Marks]

 (b) What are tokens? Explain tokenization in pong game specifying interaction matrix and the sequence

of events that occur when a goal is scored. [10 Marks]

In general, a token is an object that represents something else, such as another object (either physical or virtual),

or an abstract concept as, for example, a gift is sometimes referred to as a token of the. We can also consider

these tokens to be arranged in a form of hierarchical structure.

The playing area, or game world, in itself is at the top of the hierarchy. From then on in, it is an essentially flat

hierarchy.

Figure :The Pong token hierarchy.

 The game world token contains all the other tokens. Obviously every token has to operate within the

game world in order to form a part of the game. The player avatar token is the representation of the player within

the game world. It is effectively a channel for the user interface between the player and the game.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 The player avatar for Pong is very simple; it is merely a bat and a score. These are how the player is

represented in Pong. The other tokens—those manipulated by the computer—are the ball, the walls, and the goal

zones.

 Now it’s time for a little sleight of hand of the sort that is possible with only the written word. Reread the

two paragraphs, and for every instance of the word “token,” read it as “object.”

 So, if we were just talking about objects all along, why didn’t we just use the word “object” to start with?

 The main reason—and why we particularly like the use of the word token and why we will continue

using it from here on in—is that these conceptual tokens may not have a one-to-one mapping with the

programming language objects (for example, in C++) that are defined by the programmers. What we are trying to

do is to break down the game design into conceptual objects that will eventually be translated into programming

language objects. This tokenization process is an intermediary stage in the production of a decent architecture. In

order to describe this without causing confusion, we need to use different terminology for each type of object.

 The tokenization of a game design such as Pong is fairly trivial, and there’s really only one way to do it.

In spite of this, it makes an excellent example to try to demonstrate the thought processes behind tokenization.

Not all games will be so trivial, and, for some more complex games, there may be many ways, all of which are

equally valid. So now we have a set of tokens. On their own, they are not very exciting as they do not interact

with one another. But as we know, in Pong there are all sorts of interactions going on. Well, one anyway:

collisions.

 We can now define an event—the collision event. Let’s say that a collision event is generated when two

tokens collide. The net result of this event is that each token receives a message telling it that a collision has

occurred, and the type of object it has collided with.

 The token interaction matrix is a very important construct. It is a chart of all the interactions that take

place in the game. Note that for very large games we would not use a token-token matrix directly. Instead we

would introduce an extra layer of abstraction by using token-property and/or property-property.

 Okay, so let’s look at the Pong token interaction matrix. The matrix is arranged in a triangular format,

with each token listed along the side and the bottom. An unusual feature of Pong is that tokens do not come into

contact with other tokens of the same type. This immediately means that the token-token interactions for bat-bat,

ball-ball, wall-wall, goal-goal, and score-score can be discounted. Due to the nature of the game, the following

interactions can also be discounted: bat-goal, wall-goal, score-bat, score-ball, and score-wall.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : The Pong token interaction matrix.

4. (a) State the design patterns that are commonly used in game design and explain any four

with examples. [10 Marks]

Design patterns are generalized solutions to generalized problems that occur with some modicum of

frequency when you're creating software using the object oriented programming paradigm. Why Use Design

Patterns? The most basic and condescending answer is: because these solutions have existed for a relatively long

time and many experts have used them, they're likely better than any solution you could come up with on your

own.

Common Game Programming Patterns

Singleton - You create objects that ensure that only a single instance of which can exist at a time. In my

game Total Toads, this is the design pattern used because it was easiest to fit with cocos2d's design. For example,

in cocos2d, there's a Singleton CCDirector, CCSpriteFrameCache, etc. It seems this is an often-used panacea in

game programming.

Though the general consensus seems to be that it isn't a panacea so much as it is a cancer because it

actually masks poorly designed architecture. You should probably avoid using this design pattern if you can

http://en.wikipedia.org/wiki/Singleton_pattern

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

because there's likely a better way to design the architecture of your game. This can avoid the problem of having

multiple instances of objects of which there should only be one, like a "Player" object in a single player game.

Factory - You create an object whose purpose it is to create other objects. For example, you can have a

factory class called "GameObjectFactory" with static (possibly parameterized) methods to create other game

objects like a "Player", "Enemy", "Gun", or "Bullet". The latter classes might have complex constructions that

make obtaining a instance of that specific class difficult.

The factory can take care of the object's complex configuration (adding to an object pool, adding to

physics engine, etc) and simply return a reference to the created object. This pattern helps you avoid the problem

of complex object instantiation by keeping these complex configurations in a single place, rather than scattered

around in your code.

Observer - The object in question maintains a list of other objects that are interested in its state and

notifies these listening objects of a change in its state. In Total Toads, we have 3 Frog objects and 3

FrogAnimation objects that can control the animation of the frogs based on their state. In this case, the

FrogAnimation objects are observers of the Frog objects.

Every time the state variable for a Frog changes, it notifies the associated FrogAnimation object to notice

the new state and take an action if necessary (like animating the frog). This pattern helps you avoid the problem

of event notification in your game. Since games are user-interaction driven, objects can change state at almost any

time. When an object changes state oftentimes that object needs to be animated or have other objects change their

state with respect to the new state.

State - You have an abstract (empty implementation) class that has subclasses to define the current state.

An example of this might be a first person shooter that has a "Player" class who has several possible states like

"PlayerInCombat", "PlayerOutOfCombat", and "PlayerInMenu".

When the state is changed, the player shall be represented as an instance of the appropriate state class.

When the player starts to be shot at, the player object "switches" to an instance of the PlayerInCombat class to

take advantage of that class's implementation of the mouse's left button click which makes the player able to

shoot their gun. Similarly for the "PlayerOutOfCombat" and "PlayerInMenu" classes, where the mouse might

allow usage of items or the clicking of menu options, respectively.

This pattern helps you avoid monolithic methods that perform differently based on the object's state by

having a bunch of switch or if/elses in your code. Instead, the object just changes and runs its appropriate code.

This also simplifies your code and allows you to more easily find problems in your objects behavior since the

state is right in the object's class name.

http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/State_pattern

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 (b) Discuss the seven golden principles of effective game design. [5 Marks]

Gambit 1 –Reuse

The transition of any cottage industry to a major industry comes when you achieve reuse. In this it is even

more useful is the foundation classes that can be carried over from game to game. The design patterns, whose

value is that they enable a design to be built rapidly and in a form that is already largely understood at the super

modular level. Developers often disdain plug-in modules because of the “Not Built Here” syndrome.

Frequently, even a perfectly good in-house module is not used merely because it was created by a

different team in the same company. At the very least, plug-ins should be used in the early stages. If you

genuinely feel there’s a better route finding algorithm, you can always write it later. Reusable components require

a standardized architecture, and you need to know the format that each module’s inputs and outputs will take.

Then, you can refine the interior of the module as a black box without having to change the rest of the system.

Gambit 2- Documentation

Once we talked to a development manager who was lamenting the loss of a project that had been running

smoothly for nine months. “It was a dream,” he said. “It was on schedule, they had a good demo, the whole team

got on, and the concept was a winner, too.” “What went wrong? Let me guess—the publisher just didn’t get it?

“No, the publisher was behind it all the way! The trouble was the lead programmer went off to a new job in

Atlanta, and nobody else can complete his engine.”Documentation won’t always save you from situations like

that one.

Documentation aims to make individuals less dispensable, but it can’t always make them indispensable.

However, look at it like an airbag in your car: it’s not guaranteed to save your life, but it sure helps with the odds.

Documentation has another great benefit also. It allows other team members to know what your work is about.

The payoff to the whole team is that developers don’t have to keep interrupting each other’s work with minor

questions: they can go to the documentation. And it isn’t just for other team members, either: documentation

often reminds you of a train of thought you might have forgotten.

Gambit 3- Design First

Design comes first, and development comes second. Be careful with that dictum. It doesn’t mean that

design stops and then development begins. Design is an ongoing process, which we’ve estimated is roughly 80%

complete at the commencement of development and which is further refined as time goes on.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

“Wrapping Up,” implies that approximately 20 man-months went into the original Populous game.

Technology has moved on since then, forcing games to get bigger, and it’s possible that the latest Populous game

took more than 200 man-months. However, there would be nothing to stop the first 10% of that time being spent

on a throwaway test-bed. The game play of Populous 3 is not so far advanced beyond the original, and test-beds

are very easy to create.

Gambit 4- Schedule

Sticking to the schedule is all important.

 Let’s hammer the point home.

Teams make plans and then routinely abandon them when they run into schedule

trouble. The problem isn’t so much in abandoning the plan as in failing to create a

substitute, and then falling into code-and-fix instead.

Just like plans, you can’t always stick to your first schedule, but you can try to recalibrate the schedule as

you go on. Suppose you had to get to an interview at noon and in the morning you’re planning to get your haircut

and buy a new suit. Only you leave the house late. What do you do? Just press on with all your tasks and hope

you still make the meeting at noon? Of course not!

Yet this “hope to catch up” approach is common in development teams. Instead, you re-plan the schedule,

trimming nonessential tasks or finding ways around them. In this example, maybe you’d find a hairdresser nearer

to the tailor’s—not your favorite hairdresser, but it’ll have to do. Or maybe you’d try to reschedule the interview.

The point is that you would hopefully realize that the worst thing to do would be to run around aimlessly without

any kind of schedule.

Gambit 5- Catch Mistakes as You Go Along

 The longer an error is allowed to fester untouched, the higher the cost of repair (in terms of both time and

money) when it is finally tackled. This could make the difference between a successful project and a cancellation.

Gambit 6- Limit R&D

 R&D is effectively open ended and virtually impossible to schedule for, especially if you are dependent

on the results. The rule is to perform R&D outside the scope of the project and to make sure that the success of

the project is not dependent on the outcome. Always have a backup plan.

Gambit 7- Know When to Draw the Line

When is it “good enough”? The average game developer will say “Never! Or at least not until I’ve

optimized every last function down the max.” Sometimes developers are just too focused to know when to stop

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

and look at the bigger picture. This is a very difficult skill for a developer, who is generally used to focusing in at

a very detailed level of construction. A project planner is the individual responsible for keeping the developers

focused in the right areas and for the right periods, but this role can fall to other team members, too. Knowing

when to draw the line prevents feature creep, one of the three lead balloons that can affect a project.

 (c) Give a practical example of :- [5 Marks]

 i. Using Inheritance over Containment.

 ii. Using Containment over Inheritance

 (d) Describe the game build process. [5 Marks]

Depending on the type of game you are creating and on how you expect to get it produced, you may want to

develop as many as six different documents at various stages of the creative process. If it sounds like a lot of

work, then you are beginning to get my point

➢ All games should begin with a design treatment, i.e., a quick discussion of your product's unique features and

target audience.

➢ Then, you should move to a preliminary design, discussing the game's rules, content and behavior in a purely

qualitative way. This document should be circulated and discussed as widely as possible given the situation.

➢ A final design is a re-write of the previous document, which etches the product's features in stone.

➢ The product specification (which only really makes sense for interactive products) details how the features

adopted in the final design will be implemented.

➢ The graphic bible determines the look and feel of the game's characters, maps, props, etc.

➢ The interactive screenplay, if appropriate, contains the dialogs and the storyline implemented into the

product.

The game designer may or may not be qualified to write all of these documents. A product specification for a

computer game, for example, requires considerable input on the part of the game's producer, lead programmer

and lead artist, while a screenplay should be crafted by a professional writer. However, as "guardian of the

vision", the designer should have final say on what goes into his product, and be involved in all aspects of the

process, if only as an overseer.

5. (a) Explain why game development has to be tier-based? Describe the application of Tier-Based

 approach to architecture design. [10 Marks]

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Tier Zero: The Prototype-

Of course, it would be difficult to leap straight in and implement the skeleton correctly the first time you try, so

we need to take this into account when designing the architecture. We do this via prototyping techniques. In fact,

the prototype is really the very first part of defining the architecture. We could say that the prototype is Tier Zero

in the development model. Tier Zero is really a special case, before we get into the architecture proper. We need

to be able to test our game design ideas, refine them, and work out what we need to do in order to efficiently

implement our tier-based architecture. This tier of our project isn’t really one of the main tiers.

Tier One and Beyond

Once all the prototyping has produced useful results, it’s time to get down to the real meat of the architecture

design. Tier One of the development process takes the results of the prototyping we have already done and unifies

the results into a single framework design. The good thing about this is that this framework will be designed to be

reusable. If we are developing our code as reusable components, then a large proportion of this initial Tier One

work will be useful for other concurrent or future projects. In Tier One, the developers concentrate their efforts on

producing the hard-architecture components that will be required in the game project. Usually, unless there is a

pressing reason otherwise, Tier One begins at the lower granularity levels, and the work involves producing

components such as hardware-interfacing modules and the basic game framework code.

N-tier and 3-tier are architectural deployment styles that describe the separation of functionality into segments in

much the same way as the layered style, but with each segment being a tier that can be located on a physically

separate computer. They evolved through the component-oriented approach, generally using platform specific

methods for communication instead of a message-based approach.

N-tier application architecture is characterized by the functional decomposition of applications, service

components, and their distributed deployment, providing improved scalability, availability, manageability, and

resource utilization. Each tier is completely independent from all other tiers, except for those immediately above

and below it. The nth tier only has to know how to handle a request from the n+1th tier, how to forward that

request on to the n-1th tier (if there is one), and how to handle the results of the request. Communication between

tiers is typically asynchronous in order to support better scalability.

N-tier architectures usually have at least three separate logical parts, each located on a separate physical server.

Each part is responsible for specific functionality. When using a layered design approach, a layer is deployed on a

tier if more than one service or application is dependent on the functionality exposed by the layer.

An example of the N-tier/3-tier architectural style is a typical financial Web application where security is

important. The business layer must be deployed behind a firewall, which forces the deployment of the

presentation layer on a separate tier in the perimeter network. Another example is a typical rich client connected

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

application, where the presentation layer is deployed on client machines and the business layer and data access

layer are deployed on one or more server tiers.

The main benefits of the N-tier/3-tier architectural style are:

• Maintainability. Because each tier is independent of the other tiers, updates or changes can be carried out

without affecting the application as a whole.

• Scalability. Because tiers are based on the deployment of layers, scaling out an application is reasonably

straightforward.

• Flexibility. Because each tier can be managed or scaled independently, flexibility is increased.

• Availability. Applications can exploit the modular architecture of enabling systems using easily scalable

components, which increases availability.

Consider either the N-tier or the 3-tier architectural style if the processing requirements of the layers in the

application differ such that processing in one layer could absorb sufficient resources to slow the processing in

other layers, or if the security requirements of the layers in the application differ. For example, the presentation

layer should not store sensitive data, while this may be stored in the business and data layers. The N-tier or the 3-

tier architectural style is also appropriate if you want to be able to share business logic between applications, and

you have sufficient hardware to allocate the required number of servers to each tier.

Consider using just three tiers if you are developing an intranet application where all servers are located within

the private network; or an Internet application where security requirements do not restrict the deployment of

business logic on the public facing Web or application server. Consider using more than three tiers if security

requirements dictate that business logic cannot be deployed to the perimeter network, or the application makes

heavy use of resources and you want to offload that functionality to another server.

 (b) What is source control? Explain in brief the different functionalities provided by Source

 Control System? [10 Marks]

A component of software configuration management, version control, also known as revision control or source

control,[1]:2 is the management of changes to documents, computer programs, large web sites, and other

collections of information. Changes are usually identified by a number or letter code, termed the "revision

number," "revision level," or simply "revision." For example, an initial set of files is "revision 1." When the first

change is made, the resulting set is "revision 2," and so on. Each revision is associated with a timestamp and the

person making the change. Revisions can be compared, restored, and with some types of files, merged.

 The need for a logical way to organize and control revisions has existed for almost as long as writing has

existed, but revision control became much more important, and complicated, when the era of computing began.

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Version_control#cite_note-Mercurial-1
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Writing

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

The numbering of book editions and of specification revisions are examples that date back to the print-only era.

Today, the most capable (as well as complex) revision control systems are those used in software development,

where a team of people may change the same files.

 Version control systems (VCS) most commonly run as stand-alone applications, but revision control is

also embedded in various types of software such as word processors and spreadsheets, e.g., Google Docs and

Sheets[2] and in various content management systems, e.g., Wikipedia's Page history. Revision control allows for

the ability to revert a document to a previous revision, which is critical for allowing editors to track each other's

edits, correct mistakes, and defend against vandalism and spamming.

 Software tools for revision control are essential for the organization of multi-developer projects.

 In computer software engineering, revision control is any kind of practice that tracks and provides control

over changes to source code. Software developers sometimes use revision control software to maintain

documentation and configuration files as well as source code.

 As teams design, develop and deploy software, it is common for multiple versions of the same software

to be deployed in different sites and for the software's developers to be working simultaneously on updates. Bugs

or features of the software are often only present in certain versions (because of the fixing of some problems and

the introduction of others as the program develops).

 Therefore, for the purposes of locating and fixing bugs, it is vitally important to be able to retrieve and

run different versions of the software to determine in which version(s) the problem occurs. It may also be

necessary to develop two versions of the software concurrently (for instance, where one version has bugs fixed,

but no new features (branch), while the other version is where new features are worked on (trunk).

 At the simplest level, developers could simply retain multiple copies of the different versions of the

program, and label them appropriately. This simple approach has been used on many large software projects.

While this method can work, it is inefficient as many near-identical copies of the program have to be maintained.

This requires a lot of self-discipline on the part of developers, and often leads to mistakes. Consequently, systems

to automate some or all of the revision control process have been developed.

 Moreover, in software development, legal and business practice and other environments, it has become

increasingly common for a single document or snippet of code to be edited by a team, the members of which may

be geographically dispersed and may pursue different and even contrary interests. Sophisticated revision control

that tracks and accounts for ownership of changes to documents and code may be extremely helpful or even

indispensable in such situations.

Structure revision control manages changes to a set of data over time. These changes can be structured in various

ways.

https://en.wikipedia.org/wiki/Edition_%28book%29
https://en.wikipedia.org/wiki/Specification_%28technical_standard%29
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Version_control#cite_note-2
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Help:Page_history
https://en.wikipedia.org/wiki/Spamming
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Computer_bug
https://en.wikipedia.org/wiki/Branching_%28revision_control%29
https://en.wikipedia.org/wiki/Trunk_%28software%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Often the data is thought of as a collection of many individual items, such as files or documents, and

changes to individual files are tracked. This accords with intuitions about separate files, but causes problems

when identity changes, such as during renaming, splitting, or merging of files. Accordingly, some systems, such

as git, instead consider changes to the data as a whole, which is less intuitive for simple changes, but simplifies

more complex changes.

 When data that is under revision control is modified, after being retrieved by checking out, this is not in

general immediately reflected in the revision control system (in the repository), but must instead be checked in or

committed. A copy outside revision control is known as a "working copy". As a simple example, when editing a

computer file, the data stored in memory by the editing program is the working copy, which is committed by

saving.

 Concretely, one may print out a document, edit it by hand, and only later manually input the changes into

a computer and save it. For source code control, the working copy is instead a copy of all files in a particular

revision, generally stored locally on the developer's computer in this case saving the file only changes the

working copy, and checking into the repository is a separate step.

 If multiple people are working on a single data set or document, they are implicitly creating branches of

the data (in their working copies), and thus issues of merging arise, as discussed below. For simple collaborative

document editing, this can be prevented by using file locking or simply avoiding working on the same document

that someone else is working on.

 Revision control systems are often centralized, with a single authoritative data store, the repository, and

check-outs and check-ins done with reference to this central repository. Alternatively, in distributed revision

control, no single repository is authoritative, and data can be checked out and checked into any repository. When

checking into a different repository, this is interpreted as a merge or patch.

6. (a) Explain the various platforms on which game can be deployed on? What are the advantages and

disadvantages of each of these platforms? [10 Marks]

Finding the right game engine can be the key to successfully building and deploying a game that becomes both

popular and lucrative. But there are so many game engines out there vying for your attention. Clearly, some

guidelines on the subject would be useful.

Ten years ago, it was okay to release your game on one platform at a time. Today, it’s more typical for a game to

be released rapidly on multiple platforms. To that end, a cross-platform game engine offers some real advantages,

and the options there are quite diverse and plentiful. Having recently released my own game template based on

https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/Distributed_revision_control
http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Cocos2D JS, I thought it would be interesting to compare some of the major game engines and see how they stack

up against each other.

To prepare for this post, I wrote a complete Breakout clone in four of today’s top cross-platform game engines:

Unity, Corona, Cocos2D JS and Appcelerator Titanium, and also using my game template, RapidGame Pro. The

code can be found at the end of each section, so you can see for yourself. My observations on how they all

compare should help you make a choice that may save you and your team weeks or months.

Unity : Unity is, in short, a closed-source, cross-platform game development application. You create your game

by manipulating objects in 3D and attaching various components to them. Even 2D games must be manipulated

in 3D. Scripts are written in C# (recommended), Boo or Unityscript (mistakenly called JavaScript) and attached

to 3D objects as components.

Launching Unity for the first time, you may feel like the pilot of a 747 jet plane. There is much to learn before

even the first switch can be flipped. First of all, there’s camera and lights. When trying to add a simple cube to the

scene, it can get lost behind the camera or perhaps be invisible because there’s no light. In short, there is a

learning curve.

Prepare to spend approximately 8-12 hours getting familiar enough to develop your own game. Unity was first

released in 2005 and the interface hasn’t changed much since. To be frank, it feels like many of the repetitive

tasks in day-to-day Unity game development are busy work. Adding audio sources, updating prefabs and

importing assets are all examples of tasks that shouldn’t have to be done, or shouldn’t take so long. It would be

nice if Unity had a modern makeover.

That said, once you’ve created a game with Unity, deployment is a cinch. With a couple of clicks, you can

export your game to mobile, desktop and/or web (web currently requires the Unity player app to be installed). If

you have the right license, you can even deploy to gaming consoles like Xbox, Playstation and Wii.

Corona : Corona is a closed-source 2D game simulator and cloud-build application. Game code is written in Lua

scripts and played back in the Corona simulator. Like Mystique from X-Men, the simulator can take on many

skins, resolutions and ratios. When you’re ready to deploy, it builds your game in the cloud and delivers you an

iOS or Android game client.

One shortcoming of Corona is its limited deployment options. Only mobile platforms like iOS, Android, Kindle

and Nook are supported. Windows Phone is coming soon. Cloud-Imagine a day full of testing your game on the

device, tweaking one little thing and waiting a few minutes to be able to see if it worked.

Like Unity, Corona is closed-source and proprietary. There’s no way to make a modification or fix a bug in

the engine, and you cannot learn from its code.

https://unity3d.com/
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://en.wikipedia.org/wiki/Unity_%28game_engine%29
http://forum.unity3d.com/threads/148312-how-unity-1-looked-back-in-2005
http://coronalabs.com/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Cocos2D JS : Cocos2D JS is a cross-platform, open-source, free game development SDK. It is the newest — and

perhaps sexiest — member of the Cocos2D family. Essentially it’s a combination of two popular open-source

projects: Cocos2D X for mobile / desktop and Cocos2D HTML5 for web. While it is currently 2D / 2.5D, there

are plans to add 3D support.

You write game code entirely in JavaScript. On native platforms like mobile and desktop, your game’s JavaScript

is bound to native C++ objects, granting you maximum speed without having to write any native code. Web

platforms run pure JavaScript and render using Canvas or WebGL, so no player applications need to be

 installed.

The easiest way to get started with Cocos2D JS game development is using the HTML5 platform. Open up a

browser window and your favorite text or code editor, save your JavaScript, refresh the browser and voila. It’s a

rapid way to develop. When you’re ready to test and deploy to native platforms, you’ll need Xcode, Visual Studio

and/or Eclipse.

Cocos2D JS games can currently be deployed to iOS, Android, Blackberry, Windows Phone, Mac, Windows,

Linux and HTML. With such wide deployment options, it’s easy to see why many game developers are choosing

Cocos2D.

Appcelerator Titanium : Titanium is a cross-platform, open-source app development kit and Eclipse-based IDE.

Apps are written in JavaScript and run natively, not just in a WebView. With Titanium Studio it’s possible to

develop, test and deploy to mobile and web platforms.

For 2D game development, there’s the Platino Game Engine, an open-source — but not free — SDK that

can be added to your Titanium stack. Getting acquainted with Titanium (more specifically Platino) is not as easy

as it could be. The documentation has holes. For example, the crucial .center sprite property is left

 undocumented. Moreover, the physics engine is cumbersome and archaic. You have to synchronize

all physics bodies and sprites manually using a very non-JavaScript, C-like API.

On the bright side, one nice thing about Titanium development is that the SDK is prebuilt. You can run your

game on a simulator or device with very short build times.

RapidGame Pro : RapidGame Pro, an open-core game (dual MIT licensed) template based on Cocos2D JS, to

make game development using open source more rapid. It achieves this in a few ways:

By providing a project creator tool and game templates that make starting a game with scenes, sprites,

sound, physics, a server, monetization, social, etc. a breeze.By prebuilding native libraries.

http://www.cocos2d-x.org/download
http://www.cocos2d-x.org/news/201
http://diveintohtml5.info/canvas.html
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/
http://www.cocos2d-x.org/wiki/Supported_Platforms_and_Programming_Languages
http://www.appcelerator.com/
http://forumone.com/blogs/post/what-titanium-appcelerator-really-and-how-it-works
http://www.appcelerator.com/titanium/titanium-studio/
http://lanica.co/products/platino/engine/
https://github.com/Lanica/Platform-platino
http://docs.lanica.co/docs/#%21/api/Sprite
http://docs.lanica.co/docs/#%21/guide/chipmunk2d
http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

By providing and incorporating plugins for IAP, displaying ads, social networking,analytics,asynchronous

multiplayer and virtual economies that work on all platforms. By including example code to a

complete game based on multiple currencies.

Some of RapidGame Pro’s plugins had to be developed from scratch for multiple platforms. For example, the

Facebook plugin — including both social networking and IAP via Facebook Payments — is written

separately in C++ for iOS, C++ and Java for Android, and JavaScript for HTML5. All of these implementations

are accessible from your game using write code for and test.

Likewise, the following code will display a full-screen video advertisement. Behind the scenes, this single

JavaScript API call runs native C++, Java or JavaScript, depending on the platform.

Rapid Game Pro helps perform day-to-day development tasks faster. The Cocos2D X libraries and plugins are

prebuilt, so when you run your game in the simulator or on the device it will launch almost instantaneously.

Developing your own game template with social networking, monetization and other plugins for multiple

platforms — for even just one platform — can take months to get right. Rapid Game Pro lets you start with

all the little things a pro-grade game needs already done.

For a game developer, choosing the right cross-platform game engine can be the single most important decision

they make. I hope my insights help you to make that choice.

 (b) Describe the 3D graphics pipelines in detail. Explain the various inputs to this pipeline and the

operations performed on it by graphics pipeline. [10 Marks]

 In 3D computer graphics, the graphics pipeline or rendering pipeline refers to the sequence of steps used

to create a 2D raster representation of a 3D scene. Plainly speaking, once a 3D model has been created, for

instance in a video game or any other 3D computer animation, the graphics pipeline is the process of turning that

3D model into what the computer displays.

 In the early history of 3D computer graphics, fixed purpose hardware was used to speed up the steps of

the pipeline through a fixed-function pipeline. Later, the hardware evolved, becoming more general purpose,

allowing greater flexibility in graphics rendering as well as more generalized hardware, and allowing the same

generalized hardware to perform not only different steps of the pipeline, like in fixed purpose hardware, but even

in limited forms of general purpose computing.

 As the hardware evolved, so did the graphics pipelines, the OpenGL, and DirectX pipelines, but the

general concept of the pipeline remains the same. The 3D pipeline usually refers to the most common form of

computer 3D rendering, 3D polygon rendering, distinct from ray tracing, and raycasting. In particular, 3D

http://wizardfu.com/lemonadex/
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Fixed-function
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Raytracing
https://en.wikipedia.org/wiki/Raycasting

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

polygon rendering is similar to raycasting. In raycasting, a ray originates at the point where the camera resides, if

that ray hits a surface, then the color and lighting of the point on the surface where the ray hit is calculated.

 In 3D polygon rendering the reverse happens, the area that is in view of the camera is calculated, and then

rays are created from every part of every surface in view of the camera and traced back to the camera Computers

began undergoing a significant change in recent years with the introduction of a separate video card and the rise

of hardware accelerated graphics. This has led to the need for a programmable graphics pipeline which can be

manipulated by shaders

 Since the introduction of the programmable graphics pipeline most fixed-function pipeline

implementations have become obsolete, such as OpenGL's immediate mode, or Direct3D's built in hardware

Transform, clipping, and lightingThe Direct3D 11 programmable pipeline is designed for generating graphics for

realtime gaming applications. This section describes the Direct3D 11 programmable pipeline. The following

diagram shows the data flow from input to output through each of the programmable stages.

https://en.wikipedia.org/wiki/Video_card
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Fixed-function
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Transform,_clipping,_and_lighting

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : Graphics pipeline

 The graphics pipeline for Microsoft Direct3D 11 supports the same stages as the Direct3D 10 graphics

pipeline, with additional stages to support advanced features.

 You can use the Direct3D 11API to configure all of the stages. Stages that feature common shader cores

(the rounded rectangular blocks) are programmable by using the HLSL programming language. As you will see,

this makes the pipeline extremely flexible and adaptable. The following list specifies the purpose of each of the

stages.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205123%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205123%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Input-Assembler Stage - The input-assembler stage supplies data (triangles, lines and points) to the

pipeline.

➢ Vertex-Shader Stage - The vertex-shader stage processes vertices, typically performing operations such

as transformations, skinning, and lighting. A vertex shader always takes a single input vertex and

produces a single output vertex.

➢ Geometry-Shader Stage - The geometry-shader stage processes entire primitives. Its input is a full

primitive (which is three vertices for a triangle, two vertices for a line, or a single vertex for a point). In

addition, each primitive can also include the vertex data for any edge-adjacent primitives.

 This could include at most an additional three vertices for a triangle or an additional two vertices

for a line. The geometry shader also supports limited geometry amplification and de-amplification. Given

an input primitive, the geometry shader can discard the primitive, or emit one or more new primitives.

➢ Stream-Output Stage - The stream-output stage streams primitive data from the pipeline to memory on its

way to the rasterizer. Data can be streamed out and/or passed into the rasterizer. Data streamed out to

memory can be recirculated back into the pipeline as input data or read-back from the CPU.

➢ Rasterizer Stage - The rasterizer clips primitives, prepares primitives for the pixel shader, and determines

how to invoke pixel shaders.

➢ Pixel-Shader Stage - The pixel-shader stage receives interpolated data for a primitive and generates per-

pixel data such as color.

➢ Output-Merger Stage - The output-merger stage combines various types of output data (pixel shader

values, depth and stencil information) with the contents of the render target and depth/stencil buffers to

generate the final pipeline result.

➢ Hull-shader, tessellator, and domain-shader stages, which comprise the tessellation stages - The

tessellation stages convert higher-order surfaces to triangles for rendering within the Direct3D 11

pipeline.

 The Direct3D 11 programmable pipeline is also designed for providing high-speed computing tasks. A

compute shader expands Direct3D 11 beyond graphics to support general purpose GPU computing.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205116%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Vertex_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Geometry_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205121%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205125%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Pixel_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205120%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476331%28v=vs.85%29.aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

7. Write short note on (Any four) :- [20 Marks]

 a. Peek Message Method

 b. Hard and soft architectures-

Architecture Design

 When we begin to consider the actual architecture of the game (refer figure 2.1), we need also to consider

how to construct it around the planning needs of the schedule. “Milestones and Deadlines”. Each milestone will

specify the technical requirements to complete a particular tier. As we have been discussing, the architecture is

specified in three main stages, each of which expands into a number of tiers.

The three stages are:

➢ Prototyping :

 The prototyping stage allows us to have a dress rehearsal of the full architecture, allowing us to tackle

any tricky points and difficulties that we might encounter. Of course, this doesn’t mean that we are going to be

able to cover all of these difficulties, but we can tackle at least the more obvious ones, and, of course, we will be

able to explore gameplay issues sooner than we would be able to otherwise.

➢ Hard-architecture design :

 The hard-architecture design stage involves the laying of the game framework. However, the point of

using a component- based design is to produce a set of generic components that can be used across projects.

Hard-architecture components would need to be upgraded and augmented in order to keep up with emerging

technology, but, with a sensible set of interfaces, the disruption caused by this continual upgrade (not

replacement) process would be minimal. Only after a few projects have been undertaken will we see any benefits

from reusing in-house components.

Once a few projects have been completed, we will also be able to use our own components.

➢ Soft-architecture design :

 “The Software Factory,” we mentioned that the software factory architecture caused an apparent drop in

productivity for the first project developed using it, by applying more structured development methods that

reduce the amount of time spent on backtracking and unnecessary rework. This is pretty much unique for any

project, and this is as it should be, for within the soft architecture is the unique spark that makes your game stand

out from the rest. By using the soft-architecture system, we are taking advantage of all the groundwork that has

already been done for us. The soft architecture defines the game-specific functionality and data required, such as

in game graphics, music, and other data. In fact, the soft architecture is essentially data driven.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 c. Chroma key-

Chroma key compositing, or chroma keying, is a special effects / post-production technique

for compositing two images or video streams together based on color hues. The technique has been used heavily

in many fields to remove a background from the subject of a photo or video – particularly the news-casting,

motion picture and videogame industries. A color range in the top layer is made transparent, revealing another

image behind. The chroma keying technique is commonly used in video production and post-production. This

technique is also referred to as color keying, colour-separation overlay primarily by the BBC, or by various terms

for specific color-related variants such as green screen, and blue screen – chroma keying can be done with

backgrounds of any color that are uniform and distinct, but green and blue backgrounds are more commonly used

because they differ most distinctly in hue from most human skin colors. No part of the subject being filmed or

photographed may duplicate a color used in the background.

It is commonly used for weather forecast broadcasts, wherein a news presenter is usually seen standing in

front of a large CGI map during live television newscasts, though in actuality it is a large blue or green

background. When using a blue screen, different weather maps are added on the parts of the image where the

color is blue. If the news presenter wears blue clothes, his or her clothes will also be replaced with the

background video. A complementary system is used for green screens. Chroma keying is also used in the

entertainment industry for special effects in movies and videogames. The advanced state of the technology and

much commercially available computer software, such as Autodesk Smoke, Final Cut Pro, Pinnacle

Studio, Adobe After Effects, and dozens of other computer programs, makes it possible and relatively easy for the

average home computer user to create videos using the "chromakey" function with easily affordable green screen

or blue screen kits.

 d. Scene nodes-

A scene graph is a set of tree data structures where every item has zero or one parent, and each item is

either a "leaf" with zero sub-items or a "branch" with zero or more sub-items.

Each item in the scene graph is called a Node. Branch nodes are of type Parent, whose concrete

subclasses are Group, Region, and Control, or subclasses thereof.

Leaf nodes are classes such as Rectangle, Text, ImageView, MediaView, or other such leaf classes which

cannot have children. Only a single node within each scene graph tree will have no parent, which is referred to as

the "root" node.

https://en.wikipedia.org/wiki/Special_effects
https://en.wikipedia.org/wiki/Post-production
https://en.wikipedia.org/wiki/Compositing
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Video
https://en.wiktionary.org/wiki/background
https://en.wikipedia.org/wiki/News
https://en.wikipedia.org/wiki/Motion_picture
https://en.wikipedia.org/wiki/Videogame
https://en.wikipedia.org/wiki/Video_production
https://en.wikipedia.org/wiki/BBC
https://en.wikipedia.org/wiki/Human_skin_color
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Broadcast
https://en.wikipedia.org/wiki/News_presenter
https://en.wikipedia.org/wiki/Computer-generated_imagery
https://en.wikipedia.org/wiki/Newscast
https://en.wikipedia.org/wiki/Movies
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Autodesk_Smoke
https://en.wikipedia.org/wiki/Final_Cut_Pro
https://en.wikipedia.org/wiki/Pinnacle_Studio
https://en.wikipedia.org/wiki/Pinnacle_Studio
https://en.wikipedia.org/wiki/Adobe_After_Effects
https://en.wikipedia.org/wiki/Computer_program
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Group.html
https://docs.oracle.com/javafx/2/api/javafx/scene/layout/Region.html
https://docs.oracle.com/javafx/2/api/javafx/scene/control/Control.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Rectangle.html
https://docs.oracle.com/javafx/2/api/javafx/scene/text/Text.html
https://docs.oracle.com/javafx/2/api/javafx/scene/image/ImageView.html
https://docs.oracle.com/javafx/2/api/javafx/scene/media/MediaView.html

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

There may be several trees in the scene graph. Some trees may be part of a Scene, in which case they are

eligible to be displayed. Other trees might not be part of any Scene.

 A node may occur at most once anywhere in the scene graph. Specifically, a node must appear no more

than once in all of the following: as the root node of a Scene, the children ObservableList of a Parent, or as the

clip of a Node.

 The scene graph must not have cycles. A cycle would exist if a node is an ancestor of itself in the tree,

considering the Group content ObservableList, Parent children ObservableList, and Node clip relationships

mentioned above.

 If a program adds a child node to a Parent (including Group, Region, etc) and that node is already a child

of a different Parent or the root of a Scene, the node is automatically (and silently) removed from its former

parent. If a program attempts to modify the scene graph in any other way that violates the above rules, an

exception is thrown, the modification attempt is ignored and the scene graph is restored to its previous state.

 It is possible to rearrange the structure of the scene graph, for example, to move a subtree from one

location in the scene graph to another. In order to do this, one would normally remove the subtree from its old

location before inserting it at the new location. However, the subtree will be automatically removed as described

above if the application doesn't explicitly remove it.

 Node objects may be constructed and modified on any thread as long they are not yet attached to a Scene.

An application must attach nodes to a Scene, and modify nodes that are already attached to a Scene, on the

JavaFX Application Thread.

 e. Stack memory Vs Heap memory

The Stack- The stack is a "FILO" (first in, last out) data structure, which is managed and optimized by the CPU

quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a

function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are

deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.

The advantage of using the stack to store variables, is that memory is managed for you. You don't have to

allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes

stack memory so efficiently, reading from and writing to stack variables is very fast.

A key to understanding the stack is the notion that when a function exits, all of its variables are popped

off of the stack (and hence lost forever). Thus stack variables are local in nature. This is related to a concept we

https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Group.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting

to access a variable that was created on the stack inside some function, from a place in your program outside of

that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of

variables that can be store on the stack. This is not the case for variables allocated on the heap.

To summarize the stack:

• the stack grows and shrinks as functions push and pop local variables

• there is no need to manage the memory yourself, variables are allocated and freed automatically

• the stack has size limits

• stack variables only exist while the function that created them, is running

The Heap- The heap is a region of your computer's memory that is not managed automatically for you, and is not

as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory

on the heap, you must use malloc () or calloc(), which are built-in C functions. Once you have allocated

memory on the heap, you are responsible for using free () to deallocate that memory once you don't need it

any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the

heap will still be set aside (and won't be available to other processes). As we will see in the debugging section,

there is a tool called valgrind that can help you detect memory leaks.

Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical

limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to

use pointers to access memory on the heap. We will talk about pointers shortly.

Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program.

Heap variables are essentially global in scope.

Stack verses Heap Pros and Cons

Stack

• very fast access

• don't have to explicitly de-allocate variables

• space is managed efficiently by CPU, memory will not become fragmented

• local variables only

• limit on stack size (OS-dependent)

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

• variables cannot be resized

Heap

• variables can be accessed globally

• no limit on memory size

• (relatively) slower access

• no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory

are allocated, then freed

• you must manage memory (you're in charge of allocating and freeing variables)

• variables can be resized using realloc().

 f. Audio Formats-

An audio file format is a file format for storing digital audio data on a computer system. The bit layout of

the audio data (excluding metadata) is called the audio coding format and can be uncompressed, or compressed to

reduce the file size, often using lossy compression. The data can be a raw bitstream in an audio coding format, but

it is usually embedded in a container format or an audio data format with defined storage layer.

There are three major groups of audio file formats:

 Uncompressed audio formats, such as WAV, AIFF, AU or raw header-less PCM; Formats with lossless

compression, such as FLAC, Monkey's Audio (filename extension .ape), WavPack (filename extension .wv),

TTA, ATRAC Advanced Lossless, ALAC (filename extension .m4a), MPEG-4 SLS, MPEG-4 ALS, MPEG-4

DST, Windows Media Audio Lossless (WMA Lossless), and Shorten (SHN).

 Formats with lossy compression, such as Opus, MP3, Vorbis, Musepack, AAC, ATRAC and Windows

Media Audio Lossy (WMA lossy).

➢ Uncompressed audio format

 One major uncompressed audio format, LPCM, is the same variety of PCM as used in Compact

Disc Digital Audio and is the format most commonly accepted by low level audio APIs and D/A converter

hardware. Although LPCM can be stored on a computer as a raw audio format, it is usually stored in a

.wav file on Windows or in a .aiff file on Mac OS. The AIFF format is based on the Interchange File Format (IFF),

and the WAV format is based on the similar Resource Interchange File Format (RIFF). WAV and AIFF are not

inherently lossless; they're designed to store a wide variety of audio formats, lossless and lossy; they just add a

small, metadata-containing header before the audio data to declare the format of the audio data, such as LPCM

https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Audio_coding_format
https://en.wikipedia.org/wiki/Audio_compression_%28data%29
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/Container_format_%28digital%29
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/AIFF
https://en.wikipedia.org/wiki/Au_file_format
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Free_Lossless_Audio_Codec
https://en.wikipedia.org/wiki/Monkey%27s_Audio
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/WavPack
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/TTA_%28codec%29
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Apple_Lossless
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/MPEG-4_SLS
https://en.wikipedia.org/wiki/MPEG-4_ALS
https://en.wikipedia.org/wiki/MPEG-4_DST
https://en.wikipedia.org/wiki/MPEG-4_DST
https://en.wikipedia.org/wiki/Windows_Media_Audio#Windows_Media_Audio_Lossless
https://en.wikipedia.org/wiki/Shorten_%28file_format%29
https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/Opus_%28audio_format%29
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Musepack
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Windows_Media_Audio#WIndows_Media_Audio_Lossy
https://en.wikipedia.org/wiki/Windows_Media_Audio#WIndows_Media_Audio_Lossy
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Interchange_File_Format
https://en.wikipedia.org/wiki/RIFF_%28File_format%29
https://en.wikipedia.org/wiki/Metadata

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

with a particular sample rate, bit depth, number of channels. Since WAV and AIFF are widely supported and can

store LPCM,

➢ Lossless compressed audio format

 A lossless compressed format stores data in less space without losing any information. The

original, uncompressed data can be recreated from the compressed version.

 Uncompressed audio formats encode both sound and silence with the same number of bits per

unit of time. Encoding an uncompressed minute of absolute silence produces a file of the same size as encoding

an uncompressed minute of music. In a lossless compressed format, however, the music would occupy a smaller

file than an uncompressed format and the silence would take up almost no space at all.

➢ Lossy compressed audio format

 Lossy compression enables even greater reductions in file size by removing some of the audio

information and simplifying the data. This of course results in a reduction in audio quality, but a variety of

techniques are used, mainly by exploiting psychoacoustics, to remove the parts of the sound that have the least

effect on perceived quality, and to minimize the amount of audible noise added during the process. The popular

MP3 format is probably the best-known example, but the AAC format found on the iTunes Music Store is

also common. Most formats offer a range of degrees of compression, generally measured in bit rate. The lower

the rate, the smaller the file and the more significant the quality loss.

B.E 8th SEM IT JUNE -14 MARKS-100

1(a) Explain tokenization with any game example?

In general, a token is an object that represents something else, such as another object (either physical or

virtual), or an abstract concept as, for example, a gift is sometimes referred to as a token of the. We can

also consider these tokens to be arranged in a form of hierarchical structure.

The playing area, or game world, in itself is at the top of the hierarchy. From then on in, it is an

essentially flat hierarchy.

https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
https://en.wikipedia.org/wiki/Audio_bit_depth
https://en.wikipedia.org/wiki/Audio_channel
https://en.wikipedia.org/wiki/Psychoacoustics
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Bit_rate

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : The Pong token hierarchy.

 The game world token contains all the other tokens. Obviously every token has to operate within

the game world in order to form a part of the game. The player avatar token is the representation of the

player within the game world. It is effectively a channel for the user interface between the player and

the game.

 The player avatar for Pong is very simple; it is merely a bat and a score. These are how the

player is represented in Pong. The other tokens—those manipulated by the computer—are the ball, the

walls, and the goal zones. Now it’s time for a little sleight of hand of the sort that is possible with only

the written word. Reread the two paragraphs, and for every instance of the word “token,” read it as

“object.”

So, if we were just talking about objects all along, why didn’t we just use the word “object” to start

with?

 The main reason—and why we particularly like the use of the word token and why we will

continue using it from here on in—is that these conceptual tokens may not have a one-to-one mapping

with the programming language objects that are defined by the programmers. What we are trying to do

is to break down the game design into conceptual objects that will eventually be translated into

programming language objects. This tokenization process is an intermediary stage in the production of a

decent architecture. In order to describe this without causing confusion, we need to use different

terminology for each type of object.

 The tokenization of a game design such as Pong is fairly trivial, and there’s really only one way

to do it. In spite of this, it makes an excellent example to try to demonstrate the thought processes

behind tokenization. Not all games will be so trivial, and, for some more complex games, there may be

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

many ways, all of which are equally valid. So now we have a set of tokens. On their own, they are not

very exciting as they do not interact with one another. We can now define an event—the collision

event. Let’s say that a collision event is generated when two tokens collide. The net result of this event

is that each token receives a message telling it that a collision has occurred, and the type of object it has

collided with.

 The token interaction matrix is a very important construct. It is a chart of all the interactions that

take place in the game. Note that for very large games we would not use a token-token matrix directly.

Instead we would introduce an extra layer of abstraction by using token-property and/or property-

property.

 Okay, so let’s look at the Pong token interaction matrix. The matrix is arranged in a triangular

format, with each token listed along the side and the bottom. An unusual feature of Pong is that tokens

do not come into contact with other tokens of the same type. This immediately means that the token-

token interactions for bat-bat, ball-ball, wall-wall, goal-goal, and score-score can be discounted. Due to

the nature of the game, the following interactions can also be discounted: bat-goal, wall-goal, score-bat,

score-ball, and score-wall.

 Figure : The Pong token interaction matrix

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

1(b) What is object factory explain in detail?

Object factories are one of those extremely useful but often times overlooked constructs in

programming. To put it simply, object factories are like virtual functions but instead of dynamically

choosing which function gets executed at runtime, object factories dynamically choose which class gets

instantiated at runtime.

THE NEED - Here are just a few:

• Scripting language support – The game must decide which command class to create and execute

based on text commands entered by the user.

• Serialization - One type of serialization would be communicating via TCP/IP. The receiving side

must be able to dynamically create the proper message class depending on the type of message it

has just received.

• Executing commands - Many games allow users to dynamically rebind keys to other commands.

Pressing the 'A' key should be able to execute the command.

• To decreasing class dependencies – By not hard-coding the which class to instantiate we can

greatly reduce class dependencies, as classes no longer need to know about other classes in order

to create them. This can result in greatly decreased compile times.

The object factory is a class whose sole purpose is to allow the creation of families of objects. This

means that the code creating the objects is not tied in specifically to the objects that it is creating.

Usually, all the objects created by the factory derive from the same abstract base class, and are returned

to the requesting client as a reference to this class. You could also have multiple methods, Make

XXXX(), each returning a different base class, but personally we prefer to have one factory per object

family.

For example, in Balls!, all of the tokens are created by an object factory. Among other things, this

makes the loading of levels very simple. Each token type has a unique ID, and loading a level is a

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

simple matter of passing that ID to the object factory, and making use of the pointer returned. One of the

other advantages of this is low-cost garbage collection and memory tracking.

The object factory can keep track of all the objects that it allocates, inserting them into a list. When

these objects are deleted, they remove themselves from this list. If any of these objects have not been

freed at the end of the level, then they can either be cleaned up automatically or reported as errors. This

helped us find quite a few insidious little bugs in the code.

Figure shows the class relationships. This describes how the objects are related to each other

programmatically. In Figure “game object factory” receives requests from clients to create a specific

“game object.” This factory class is responsible for creating all objects representing tokens within a

level, and keeps track of them by using a related class, the “memory tracker” class. The factory class

produces instantiations of the requested object, which are returned to the client as a pointer to the base

class of all in-game token classes, the game object class.

The game object class contains a memory tracker class as an instantiated member variable. When a

game object class is instantiated, the memory tracker member is also instantiated as part of it. When

instantiated, the constructor of this class stores a reference to its owner (the enclosing game object), and

inserts itself into the list within the factory class.

When the enclosing game object is deleted, the destructor of the member memory tracker is invoked,

which removes the reference to itself from the list within the factory class. When the factory object is

itself destroyed, it checks through the list to see if any remaining game objects have not been deleted.

These can be either freed automatically, or (preferably) reported as errors, to be tracked down later.

This sort of dynamic object creation is very flexible: With judicious use of the object factory, the

structure of whole applications can be determined at runtime. As long as all the objects returned by a

specific factory conform to the same interface and behavioral contracts, then it is possible to (for

example) configure levels dynamically with fairly simple code, allow customization of the user

interface, release game expansions that don’t need to modify the original game code, or accomplish any

number of tasks that would be tricky by other means.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : class relationships for the game object factory.

2(a) Explain the use of DIRECTX in game development?

Microsoft DirectX is a collection of application programming interfaces (APIs) for handling

tasks related to multimedia, especially game programming and video, on Microsoft platforms.

Originally, the names of these APIs all began with Direct, such

as Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound, and so forth. The name DirectX was

coined as shorthand term for all of these APIs and soon became the name of the collection. When

Microsoft later set out to develop a gaming console, the X was used as the basis of the name Xboxto

indicate that the console was based on DirectX technology. The X initial has been carried forward in the

naming of APIs designed for the Xbox such as XInput and the Cross-platform Audio Creation Tool .

Direct3D (the 3D graphics API within DirectX) is widely used in the development of video

games for Microsoft Windows, Sega Dreamcast, Microsoft Xbox, Microsoft Xbox 360, and

Microsoft Xbox One. Direct3D is also used by other software applications for visualization and graphics

tasks such as CAD/CAM engineering. As Direct3D is the most widely publicized component of

DirectX, it is common to see the names "DirectX" and "Direct3D" used interchangeably.

The DirectX software development kit (SDK) consists of runtime libraries in redistributable

binary form, along with accompanying documentation and headers for use in coding. Originally, the

runtimes were only installed by games or explicitly by the user. Windows 95 did not launch with

DirectX, but DirectX was included with Windows 95 OEM Service Release 2.[2] Windows

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Multimedia
https://en.wikipedia.org/wiki/Game_programming
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/DirectDraw
https://en.wikipedia.org/wiki/DirectMusic
https://en.wikipedia.org/wiki/DirectPlay
https://en.wikipedia.org/wiki/DirectSound
https://en.wikipedia.org/wiki/Xbox_(console)
https://en.wikipedia.org/wiki/XInput
https://en.wikipedia.org/wiki/Cross-platform_Audio_Creation_Tool
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Sega
https://en.wikipedia.org/wiki/Dreamcast
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Xbox_(console)
https://en.wikipedia.org/wiki/Xbox_360
https://en.wikipedia.org/wiki/Xbox_One
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Header_file
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/DirectX#cite_note-2
https://en.wikipedia.org/wiki/Windows_98

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

98 and Windows NT 4.0 both shipped with DirectX, as has every version of Windows released since.

The SDK is available as a free download. While the runtimes are proprietary, closed-source software,

source code is provided for most of the SDK samples. Starting with the release of Windows 8 Developer

Preview, DirectX SDK has been integrated into Windows SDK.

DirectX gives the highest fidelity and richest experiences in 3D gaming. DirectX supports a

wide range of graphics feature levels, from DirectX 9.1 to all the latest hardware features exposed in

DirectX 11 and 12. DirectX allows you to tailor your game to every PC, from power-efficient ARM-

based portable tablets, to over-clocked multi-GPU gamer rigs.

2(b) What is hard and soft architectures. Explain in brief?

Architecture Design

 When we begin to consider the actual architecture of the game (refer figure 2.1), we need also to

consider how to construct it around the planning needs of the schedule. “Milestones and Deadlines”.

Each milestone will specify the technical requirements to complete a particular tier. As we have been

discussing, the architecture is specified in three main stages, each of which expands into a number of

tiers.

The three stages are:

➢ Prototyping :

 The prototyping stage allows us to have a dress rehearsal of the full architecture, allowing us to

tackle any tricky points and difficulties that we might encounter. Of course, this doesn’t mean that we

are going to be able to cover all of these difficulties, but we can tackle at least the more obvious ones,

and, of course, we will be able to explore gameplay issues sooner than we would be able to otherwise.

➢ Hard-architecture design :

 The hard-architecture design stage involves the laying of the game framework. However, the

point of using a component- based design is to produce a set of generic components that can be used

across projects. Hard-architecture components would need to be upgraded and augmented in order to

keep up with emerging technology, but, with a sensible set of interfaces, the disruption caused by this

continual upgrade (not replacement) process would be minimal. Only after a few projects have been

undertaken will we see any benefits from reusing in-house components.

https://en.wikipedia.org/wiki/Windows_98
https://en.wikipedia.org/wiki/Windows_NT_4.0

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Once a few projects have been completed, we will also be able to use our own components.

➢ Soft-architecture design :

 “The Software Factory,” we mentioned that the software factory architecture caused an apparent

drop in productivity for the first project developed using it, by applying more structured development

methods that reduce the amount of time spent on backtracking and unnecessary rework. This is pretty

much unique for any project, and this is as it should be, for within the soft architecture is the unique

spark that makes your game stand out from the rest. By using the soft-architecture system, we are taking

advantage of all the groundwork that has already been done for us. The soft architecture defines the

game-specific functionality and data required, such as in game graphics, music, and other data. In fact,

the soft architecture is essentially data driven.

3(b) Why is coding phase important? Explain coding priorities that need to be established as part

of technical design?

4(a) What are the three stages of running a game? Explain in detail?

4(b) Explain in detail cleanup process to be followed during and after game exit?

5 (a) Explain source control system. [10 Marks]

A component of software configuration management, version control, also known as revision

control or source control, is the management of changes to documents, computer programs, large web

sites, and other collections of information. Changes are usually identified by a number or letter code,

termed the "revision number," "revision level," or simply "revision." For example, an initial set of files

is "revision 1." When the first change is made, the resulting set is "revision 2," and so on. Each revision

is associated with a timestamp and the person making the change. Revisions can be compared, restored,

and with some types of files, merged.

The need for a logical way to organize and control revisions has existed for almost as long as

writing has existed, but revision control became much more important, and complicated, when the era of

computing began. The numbering of book editions and of specification revisions are examples that date

back to the print-only era. Today, the most capable (as well as complex) revision control systems are

those used in software development, where a team of people may change the same files.

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Writing
https://en.wikipedia.org/wiki/Edition_%28book%29
https://en.wikipedia.org/wiki/Specification_%28technical_standard%29
https://en.wikipedia.org/wiki/Software_development

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Version control systems (VCS) most commonly run as stand-alone applications, but revision

control is also embedded in various types of software such as word processors and spreadsheets, e.g.,

Google Docs and Sheets[2] and in various content management systems, e.g., Wikipedia's Page history.

Revision control allows for the ability to revert a document to a previous revision, which is critical for

allowing editors to track each other's edits, correct mistakes, and defend against vandalism and

spamming.

Software tools for revision control are essential for the organization of multi-developer projects.

In computer software engineering, revision control is any kind of practice that tracks and

provides control over changes to source code. Software developers sometimes use revision control

software to maintain documentation and configuration files as well as source code.

As teams design, develop and deploy software, it is common for multiple versions of the same

software to be deployed in different sites and for the software's developers to be working simultaneously

on updates. Bugs or features of the software are often only present in certain versions (because of the

fixing of some problems and the introduction of others as the program develops).

Therefore, for the purposes of locating and fixing bugs, it is vitally important to be able to

retrieve and run different versions of the software to determine in which version(s) the problem occurs.

It may also be necessary to develop two versions of the software concurrently (for instance, where one

version has bugs fixed, but no new features (branch), while the other version is where new features are

worked on (trunk).

At the simplest level, developers could simply retain multiple copies of the different versions of

the program, and label them appropriately. This simple approach has been used on many large software

projects. While this method can work, it is inefficient as many near-identical copies of the program have

to be maintained. This requires a lot of self-discipline on the part of developers, and often leads to

mistakes. Consequently, systems to automate some or all of the revision control process have been

developed.

Moreover, in software development, legal and business practice and other environments, it has

become increasingly common for a single document or snippet of code to be edited by a team, the

members of which may be geographically dispersed and may pursue different and even contrary

interests. Sophisticated revision control that tracks and accounts for ownership of changes to documents

and code may be extremely helpful or even indispensable in such situations.

https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Version_control#cite_note-2
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Help:Page_history
https://en.wikipedia.org/wiki/Spamming
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Computer_bug
https://en.wikipedia.org/wiki/Branching_%28revision_control%29
https://en.wikipedia.org/wiki/Trunk_%28software%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Structure revision control manages changes to a set of data over time. These changes can be structured

in various ways.

Often the data is thought of as a collection of many individual items, such as files or documents,

and changes to individual files are tracked. This accords with intuitions about separate files, but causes

problems when identity changes, such as during renaming, splitting, or merging of files. Accordingly,

some systems, such as git, instead consider changes to the data as a whole, which is less intuitive for

simple changes, but simplifies more complex changes.

When data that is under revision control is modified, after being retrieved by checking out, this is

not in general immediately reflected in the revision control system (in the repository), but must instead

be checked in or committed. A copy outside revision control is known as a "working copy". As a simple

example, when editing a computer file, the data stored in memory by the editing program is the working

copy, which is committed by saving.

Concretely, one may print out a document, edit it by hand, and only later manually input the

changes into a computer and save it. For source code control, the working copy is instead a copy of all

files in a particular revision, generally stored locally on the developer's computer in this case saving the

file only changes the working copy, and checking into the repository is a separate step.

If multiple people are working on a single data set or document, they are implicitly creating

branches of the data (in their working copies), and thus issues of merging arise, as discussed below. For

simple collaborative document editing, this can be prevented by using file locking or simply avoiding

working on the same document that someone else is working on.

Revision control systems are often centralized, with a single authoritative data store, the

repository, and check-outs and check-ins done with reference to this central repository. Alternatively, in

distributed revision control, no single repository is authoritative, and data can be checked out and

checked into any repository. When checking into a different repository, this is interpreted as a merge or

patch.

5. (b) Explain various platforms on which game can be deployed on. What are the advantages

 and disadvantages of each of these platform? [10 Marks]

https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Distributed_revision_control

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Finding the right game engine can be the key to successfully building and deploying a game that

becomes both popular and lucrative. But there are so many game engines out there vying for your

attention. Clearly, some guidelines on the subject would be useful.

Ten years ago, it was okay to release your game on one platform at a time. Today, it’s more typical

for a game to be released rapidly on multiple platforms. To that end, a cross-platform game engine

offers some real advantages, and the options there are quite diverse and plentiful. Having recently

released my own game template based on Cocos2D JS, I thought it would be interesting to compare

some of the major game engines and see how they stack up against each other.

To prepare for this post, I wrote a complete Breakout clone in four of today’s top cross-platform

game engines: Unity, Corona, Cocos2D JS and Appcelerator Titanium, and also using my game

template, RapidGame Pro. The code can be found at the end of each section, so you can see for yourself.

My observations on how they all compare should help you make a choice that may save you and your

team weeks or months.

Unity : Unity is, in short, a closed-source, cross-platform game development application. You create

your game by manipulating objects in 3D and attaching various components to them. Even 2D games

must be manipulated in 3D. Scripts are written in C# (recommended), Boo or Unityscript (mistakenly

called JavaScript) and attached to 3D objects as components.

Launching Unity for the first time, you may feel like the pilot of a 747 jet plane. There is much to

learn before even the first switch can be flipped. First of all, there’s camera and lights. When trying to

add a simple cube to the scene, it can get lost behind the camera or perhaps be invisible because there’s

no light. In short, there is a learning curve.

Prepare to spend approximately 8-12 hours getting familiar enough to develop your own game.Unity

was first released in 2005 and the interface hasn’t changed much since. To be frank, it feels like many of

the repetitive tasks in day-to-day Unity game development are busy work. Adding audio sources,

updating prefabs and importing assets are all examples of tasks that shouldn’t have to be done, or

shouldn’t take so long. It would be nice if Unity had a modern makeover.

That said, once you’ve created a game with Unity, deployment is a cinch. With a couple of clicks,

you can export your game to mobile, desktop and web currently requires the Unity player app to be

installed. If you have the right license, you can even deploy to gaming consoles like Xbox.

http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802
https://unity3d.com/
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://en.wikipedia.org/wiki/Unity_%28game_engine%29
http://forum.unity3d.com/threads/148312-how-unity-1-looked-back-in-2005

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Corona : Corona is a closed-source 2D game simulator and cloud-build application. Game code

is written in Lua scripts and played back in the Corona simulator. Like Mystique from X-Men, the

simulator can take on many skins, resolutions and ratios. When you’re ready to deploy, it builds your

game in the cloud and delivers you an iOS or Android game client.

 Ah, the sweet joy of developing games with Corona. Everything about the language is easy.

Adding a physics body, for example, takes only one line of code. After a mere 2-4 hours of getting

familiar with the platform you’ll be ready to develop games. And once you start it’s difficult to stop.

The simulator is responsive, quick and polite about using your computer’s resources. With the simulator

and your choice of code editor open side by side, you can save the Lua file and the simulator

 instantaneously reloads the game. It’s simply delightful to develop a game with such rapidity.

 One shortcoming of Corona is its limited deployment options. Only mobile platforms like iOS,

Android, Kindle and Nook are supported. Windows Phone is coming soon. Cloud-Imagine a day full of

testing your game on the device, tweaking one little thing and waiting a few minutes to be able to see if

it worked.

 Like Unity, Corona is closed-source and proprietary. There’s no way to make a modification or

fix a bug in the engine, and you cannot learn from its code.

Cocos2D JS : Cocos2D JS is a cross-platform, open-source, free game development SDK. It is

the newest — and perhaps sexiest — member of the Cocos2D family. Essentially it’s a combination of

two popular open-source projects: Cocos2D X for mobile / desktop and Cocos2D HTML5 for web.

While it is currently 2D / 2.5D, there are plans to add 3D support.

 You write game code entirely in JavaScript. On native platforms like mobile and desktop, your

game’s JavaScript is bound to native C++ objects, granting you maximum speed without having to write

any native code. Web platforms run pure JavaScript and render using Canvas or WebGL, so no player

applications need to be installed.

 The easiest way to get started with Cocos2D JS game development is using the HTML5

platform. Open up a browser window and your favorite text or code editor, save your JavaScript, refresh

the browser and voila. It’s a rapid way to develop. When you’re ready to test and deploy to native

platforms, you’ll need Xcode, Visual Studio and/or Eclipse.

http://coronalabs.com/
http://www.cocos2d-x.org/download
http://www.cocos2d-x.org/news/201
http://diveintohtml5.info/canvas.html
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Cocos2D JS games can currently be deployed to iOS, Android, Blackberry, Windows Phone,

Mac, Windows, Linux and HTML. With such wide deployment options, it’s easy to see why many

game developers are choosing Cocos2D.

Appcelerator Titanium : Titanium is a cross-platform, open-source app development kit and

Eclipse-based IDE. Apps are written in JavaScript and run natively, not just in a WebView. With

Titanium Studio it’s possible to develop, test and deploy to mobile and web platforms.

 For 2D game development, there’s the Platino Game Engine, an open-source but not free —

SDK that can be added to your Titanium stack. Getting acquainted with Titanium is not as easy as it

could be. The documentation has holes. For example, the crucial .center sprite property is left

undocumented. Moreover, the physics engine is cumbersome and archaic. You have to synchronize all

physics bodies and sprites manually using a very non-JavaScript, C-like API.

 On the bright side, one nice thing about Titanium development is that the SDK is prebuilt.

You can run your game on a simulator or device with very short build times.

RapidGame Pro : RapidGame Pro, an open-core game (dual MIT licensed) template based on

Cocos2D JS, to make game development using open source more rapid. It achieves this in a few ways:

 By providing a project creator tool and game templates that make starting a game with

scenes, sprites, sound, physics, a server, monetization, social, etc. a breeze.By prebuilding native

libraries.

 By providing and incorporating plugins for IAP, displaying ads, social networking,analytics,

asynchronous multiplayer and virtual economies that work on all platforms.By including example code

to a complete game based on multiple currencies.

 Some of RapidGame Pro’s plugins had to be developed from scratch for multiple platforms. For

example, the Facebook plugin — including both social networking and IAP via Facebook Payments —

is written separately in C++ for iOS, C++ and Java for Android, and JavaScript for HTML5. All of these

implementations are accessible from your game using write code for and test.

 Likewise, the following code will display a full-screen video advertisement. Behind the scenes,

this single JavaScript API call runs native C++, Java or JavaScript, depending on the platform.

http://www.cocos2d-x.org/wiki/Supported_Platforms_and_Programming_Languages
http://www.appcelerator.com/
http://forumone.com/blogs/post/what-titanium-appcelerator-really-and-how-it-works
http://www.appcelerator.com/titanium/titanium-studio/
http://lanica.co/products/platino/engine/
https://github.com/Lanica/Platform-platino
http://docs.lanica.co/docs/#%21/api/Sprite
http://docs.lanica.co/docs/#%21/guide/chipmunk2d
http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802
http://wizardfu.com/lemonadex/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 RapidGame Pro helps perform day-to-day development tasks faster. The Cocos2D X libraries

and plugins are prebuilt, so when you run your game in the simulator or on the device it will launch

almost instantaneously.

 Developing your own game template with social networking, monetization and other plugins for

multiple platforms — for even just one platform — can take months to get right.RapidGame Pro

lets you start with all the little things a pro-grade game needs already done.

 For a game developer, choosing the right cross-platform game engine can be the single most

important decision they make. I hope my insights help you to make that choice.

6. (a) explain game play research in detail?

The gameplay could have an impact on the technology needed for the game. For example,the game’s

user interface may require investigation of certain types of controller. Other aspects of the gameplay

may require active research. For example, in the case of strategy games, plenty of information is

available if you’re prepared to do a little digging: Game theory from the War Studies Group is readily

available on the Web, as are analyses commissioned by the U.S. Navy and the Pentagon. Looking at

history also indicates where different factors have contributed to the payoff matrices of a real situation,

such as why the Aztecs became so powerful, and how in spite of this, they were beaten by Cortés.

 For researching the gameplay of a puzzle game like Tetris or Balls!, you could look at

psychological work on types of reasoning. A satisfying puzzle game like Tetris or Puzzle Bobble will

include spatial and temporal reasoning (the “story” part) as well as logical reasoning using the

manipulation of abstract concepts mapped to concrete entities (the “planning” part) and the pleasurable

payoff of watching where all that leads, and learning something more about the way the game rules

operate (the “play” or “learning curve” part.)

 Obviously, you can find more genres of games, but the point we are making here is that you

don’t necessarily have to look in the standard or clichéd places for gameplay ideas, such as novels,

films, and other games. There is a whole world of information out there, and a lot of it can be applied to

gameplay, even if it does not seem immediately obvious. After all, the idea for Tetris was drawn from

the field of mathematics.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 The last kind of research involves researching the technology that is required to actually

implement the game. Are you going to be using any new techniques, or breaking into uncharted waters?

 This sort of research is what id Software spends most of its time doing. id Software has lots of

money. This is no coincidence: without lots of cash backing you up, research has to be more focused

and specific. You can’t just go wandering through your ideas randomly, idly daubing code “pan-it” on

the “canvas” of your compiler without someone being willing to pay the bills.

 The fact is that this sort of research takes a lot of time and a lot of money. This is where the real

research is, and where the bulk of the budget of time and money will be invested. In an ideal world,

your company would have enough money to allow unrestricted research into new technology.

 Unfortunately, unless you are id Software, then this is very unlikely. There will always be

commercial pressures breathing down your necks, and the company management will be expecting

results. In previous chapters, we have pointed out the dangers of depending on concrete results from

research. I’ll not repeat those warnings here.

 Research is an unpredictable activity, and research into new technologies is particularly

difficult. For every Quake engine, there are probably hundreds of failed attempts. Worse still, a fair

proportion of these failed attempts will have been for game projects that had to be canned due to that

failure: For the original release of Quake, the focus was on the technology and not so much on the

game.

 In contrast, Quake II was much less of a technological advance over Quake than Quake was over

Doom, A few refinements were made to the engine, but most of the effort appeared to have gone into

refining the gameplay and the storyline. Quake III Arena seems to have reverted to the original Quake

model: concentrating on the gameplay emerging from the technology (which has been improved by the

addition of quadratic curve rendering).

 This is an interesting approach that appears to defy conventional game theory. Even the single-

player game is a multiplayer game, with all the other players controlled by the computer. I’d go as far to

say that there is no real gameplay in a multiplayer game: It’s more a simulation set in a fantasy

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

environment. It’s too close to reality (albeit a fictional reality) for it to be considered a game. It’s an

accurate simulation of future combat.

 You may be getting the impression that we are against technology in some way. That’s not true.

We are against the gratuitous use of technology in the same way as we are against gratuitous violence.

It’s unnecessary and is, in some cases, quite disturbing.

 The whole industry (with few exceptions) appears to be putting technology before gameplay,

and this is a dismal and worrying prospect. We’ve lost count of the number of games we have seen that

have lost gameplay value because the developers wanted to showcase their latest technologies. Case

Studies 18.3 and 18.4 gives details of a much-welcome exception to this pattern.

 Research should be treated with as much seriousness as you would find in a laboratory.

Everything should be documented. Every thought, every procedure, and every result— even the wrong

ones—needs to be recorded. This is serious stuff. Research is the lifeblood of your company. You need

to research in order to keep up with the fast changing pace of technology. If not, you risk being left

behind in the rush.

6 (b) discuss the content of game design document?

A game design document is a highly descriptive living design document of the design for a video

game. A GDD is created and edited by the development team and it is primarily used in the video game

industry to organize efforts within a development team. The document is created by the development

team as result of collaboration between their designers, artists and programmers as a guiding vision

which is used throughout the game development process. When a game is commissioned by a game

publisher to the development team, the document must be created by the development team and it is

often attached to the agreement between publisher and developer; the developer has to adhere to the

GDD during game development process.

You must consider two facts:

➤ The gameplay spec needs to be available to your programmers.

➤ The programmers will not read the gameplay spec.

https://en.wikipedia.org/wiki/Living_document
https://en.wikipedia.org/wiki/Software_design_document
https://en.wikipedia.org/wiki/Video_game_design
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game_industry
https://en.wikipedia.org/wiki/Video_game_industry
https://en.wikipedia.org/wiki/Game_designer
https://en.wikipedia.org/wiki/Game_artist
https://en.wikipedia.org/wiki/Game_programmer
https://en.wikipedia.org/wiki/Video_game_development

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

They really won’t. You can tell them it’s vitally important. You can plead with them. You can

even offer royalties. But the programmers will not read that spec. You may have heard the saying that

programmers can’t see the wood for the trees, while designers can’t see the trees for the wood. It’s true,

except that programmers sometimes can’t even see the trees for the leaves on the trees. This is what

makes them good at programming, the ability to break things down to quantum levels of each tiny

individual step in a process. It’s also why they aren’t going to take a long document like the gameplay

spec and read and absorb it to the point where they’ve built a model of the whole finished product in

their heads.

But the programming team does need the design documentation readily available for several

reasons. First, carrying out tasks without knowing the goal is demoralizing and counterproductive.

Second, when some aspect of a task is open to question, it’s more efficient to be able to refer to the spec

than it is to hold a meeting to answer it. Third, although it is financially expedient to have only a single

person or small group write the spec, it’s beneficial to involve everybody’s best ideas in evolving it to

perfection. Last, a shared vision of the project contributes to group cohesion and morale. It’s a dilemma.

They need it, but they won’t read it. Obviously, the design must be made accessible to the programmers

in some other way. You could permanently assign a member of the design group to sit guru-like atop a

mountain of 3D Studio MAX boxes and answer questions whenever they arose. Because it’s unlikely

that this would prove to be cost effective, another solution that is almost as good is to have the design

documentation on an intranet site.

A game design document may be made of text, images, diagrams, concept art, Concept art is a

form of illustration used to convey an idea for use in films, video games, animation, comic books or

other media before it is put into the final product.[1] Concept art is also referred to as visual development

and/or concept design. This term can also be applied to retail, set, fashion, architectural and industrial

design.

Concept art is developed in several iterations. Artists try several designs to achieve the desired

result for the work, or sometimes searching for an interesting result. Designs are filtered and refined in

stages to narrow down the options. Concept art is not only used to develop the work, but also to show

the project's progress to directors, clients and investors. Once the development of the work is complete,

advertising materials often resemble concept art, although these are typically made specifically for this

purposed, based on final work or any applicable media to better illustrate design decisions.

https://en.wikipedia.org/wiki/Concept_art
https://en.wikipedia.org/wiki/Illustration
https://en.wikipedia.org/wiki/Films
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Comic_books
https://en.wikipedia.org/wiki/Concept_art#cite_note-1
https://en.wikipedia.org/wiki/Retail_design
https://en.wikipedia.org/wiki/Set_design
https://en.wikipedia.org/wiki/Fashion_design
https://en.wikipedia.org/wiki/Architectural_design
https://en.wikipedia.org/wiki/Industrial_design
https://en.wikipedia.org/wiki/Industrial_design

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Some design documents may include functional prototypes Software prototyping is the activity

of creating prototypes of software applications, i.e., incomplete versions of the software program being

developed. It is an activity that can occur in software development and is comparable to prototyping as

known from other fields, such as mechanical engineering or manufacturing.

A prototype typically simulates only a few aspects of, and may be completely different from, the final

product.

 Prototyping has several benefits: The software designer and implementer can get valuable

feedback from the users early in the project. The client and the contractor can compare if the software

made matches the software specification, according to which the software program is built. It also

allows the software engineer some insight into the accuracy of initial project estimates and whether the

deadlines and milestones proposed can be successfully met. The degree of completeness and the

techniques used in the prototyping have been in development and debate since its proposal in the early

1970s or a chosen game engine

 A game engine is a software framework designed for the creation and development of video

games. Developers use them to create games for consoles, mobile devices and personal computers. The

core functionality typically provided by a game engine includes a rendering engine (“renderer”) for 2D

or 3D graphics, a physics engine or collision detection (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading, localization

support, and a scene graph. The process of game development is often economized, in large part, by

reusing/adapting the same game engine to create different games, or to make it easier to "port" games to

multiple platforms for some sections of the game.

 Although considered a requirement by many companies, a GDD has no set industry standard

form. For example, developers may choose to keep the document as a word processed document,

Concept art is a form of illustration used to convey an idea for use in films, video games, animation,

comic books or other media before it is put into the final product. Concept art is also referred to as

visual development and/or concept design. This term can also be applied to retail, set, fashion,

architectural and industrial design.

 Concept art is developed in several iterations. Artists try several designs to achieve the desired

result for the work, or sometimes searching for an interesting result. Designs are filtered and refined in

https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Prototyping
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Manufacturing
https://en.wikipedia.org/wiki/Program_specification
https://en.wikipedia.org/wiki/Milestone
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game_developer
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
https://en.wikipedia.org/wiki/2D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Physics_engine
https://en.wikipedia.org/wiki/Collision_detection
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Game_AI
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Scene_graph
https://en.wikipedia.org/wiki/Game_development
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Word_processing
https://en.wikipedia.org/wiki/Illustration
https://en.wikipedia.org/wiki/Films
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Comic_books
https://en.wikipedia.org/wiki/Retail_design
https://en.wikipedia.org/wiki/Set_design
https://en.wikipedia.org/wiki/Fashion_design
https://en.wikipedia.org/wiki/Architectural_design
https://en.wikipedia.org/wiki/Industrial_design

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

stages to narrow down the options. Concept art is not only used to develop the work, but also to show

the project's progress to directors, clients and investors. Once the development of the work is complete,

advertising materials often resemble concept art, although these are typically made specifically for this

purposed, based on final work or as an on-line collaboration tool. Collaborative software or groupware

is an application software designed to help people involved in a common task to achieve their goals.

One of the earliest definitions of collaborative software is 'intentional group processes plus software to

support them.

 Collaborative software is a broad concept that overlaps considerably with computer-supported

cooperative work (CSCW) groupware is part of CSCW. The authors claim that CSCW, and thereby

groupware, addresses "how collaborative activities and their coordination can be supported by means of

computer systems." Software products such as email, calendaring, text chat, wiki, and bookmarking

belong to this category whenever used for group work, whereas the more general term social software

applies to systems used outside the workplace, for example, online dating services and social

networking sites like Twitter and Facebook.

6 a) Explain the various platforms on which game can be deployed on? What are the advantages

and disadvantages of each of these platforms?

Unity- Unity is a cross-platform game development engine that allows developers to create their

games through the manipulation of objects in 3D. The closed-source system has various components

attached to those 3D objects. C#, Unity-Script or Boo are used to write the scripts. Released in 2005,

Unity is an interface that hasn’t changed much. In some ways, it features tasks that are too repetitive and

that may hinder with the overall game development-process.

 Once a game is created with Unity, the development that follows afterwards is a simple task.

A few clicks are required to export your creation to web, desktop or mobile. Unity has a functional free

version available, although if you’re an avid game developer, the paid version is a much better option

because it allows setup to major platforms. Unity is leading multi platform game engine with many

developers using it.

Corona is a cloud-build app and 2D game simulator. The game code uses Lua scripts for the

writing, and just like X-Men and Mystique, the simulator can afford various skins, ratios and

resolutions. When the developer is all set for installation, the game is created in the cloud. Featuring a

https://en.wikipedia.org/wiki/Collaborative_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Computer-supported_cooperative_work
https://en.wikipedia.org/wiki/Computer-supported_cooperative_work
https://en.wikipedia.org/wiki/Text_chat
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Enterprise_bookmarking
https://en.wikipedia.org/wiki/Social_software
https://en.wikipedia.org/wiki/Online_dating_service
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Facebook
http://unity3d.com/unity/multiplatform

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

polite, responsive and quick simulator, Corona’s sole shortcoming is the limited deployment options.

The platform can only accept Android, iOS, Kindle, and Nook. According to the creators, soon enough

they’ll also make the platform available for Windows Phone. There’s free versions available (Starter),

but also various paid versions with yearly subscriptions.

Cocos2D JS is a free-development SDK, open-source cross-platform. Experts agree that it’s one

of the coolest on the market. Basically, it is a combo of 2 incredibly popular open-source projects:

Cocos2D HTML5 (web) and Cocos2D X (mobile). JavaScript is used to write the code of the game. On

desktop and mobile, the JavaScript of your future game is bound to C++ objects (native), thus providing

maximum speed with no need to write native code. Using you are advised to use HTML5 for game

development; as soon as you’re all set to test and launch to native platforms, Eclipse, Xcode or Visual

Studio will be needed. One of the greatest benefits of Cocos2D JS is its open-source feature. A lot of

things can be learned just by interpreting the code.

Appcelerator Titanium is an open-source, cross-platform, app development kit. This is one of the

most popular mobile game development platforms in recent past. JavaScript is used to write the apps.

By using this game development engine, you’ll be able to create, deploy and test your invention on web

platforms and mobile. It’s great that Titanium’s SDK is prebuilt; thus, your game can be run on a device

or simulator with limited build intervals.

WGame mainly functions on top of marmalade and it can be deployed at mobiles and desktops

with Lua. It is an open-source, free and proprietary software which runs on different operating systems

such as Windows, Linux etc. It is primarily used for developing video games.

SIO2 can be broadly defined as OpenGLES based platform game development for 2D and 3D

game which operates on various operating systems such as Windows, MacOS, Android and iOs. This

game development tool also enables you to port the game at Mac store as well as Windows.

The loom engine uses the AS3- like ECMAScript but does not build native code. But it uses

Cocos2D workflow which allows you to take your time while building the game. It just requires 1

commend for making a new project and second command to run it effectively. As it is open-source, so

the developer can get it for free.

SDL or Simple DirectMedia Layer is one of the most popular cross-development libraries which

have been designed especially as it offers low level access to joystick, mouse, keyboard, and audio. It

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

offers access to graphics hardware via Direct3D and OpenGl. It supports various OS such as Android,

iOS, Linux, MacOS X and Windows.

SFML offers a simple interface for various components of PC for making the development

process of multimedia and games applications. There are five modules which are networking, audio,

graphics, window and system. This is a multiplatform program which compiles and run on various

operating systems such as Windows, Mac OS X and Linux.

GameMaker game development tools allow both entry level novices and experienced game

development professionals for the creation of cross-platform games with less cost and record time. The

GameMaker also allows developers for the creation of fully functional prototypes in some hour’s time.

You can also create complete games in some weeks.

Benefits of Developing for Multiple Platforms:

As is obvious, the more platforms you cover, the more people you’ll be able to reach. With

Apple’s iOS and Google’s Android competing for top positions worldwide, the number of smartphone

users for these systems is increasing day by day. Developing an application that runs on both iPhone and

Android gives you the added advantage of tapping into greater market potential.

EASY MARKETING- When you have a larger fan base, marketing becomes easier in the sense

that you don’t have to create niche messages to cater to a specific set of people. You have the liberty

of marketing the application on various media and through generalised messages for the masses.

ONE INSTEAD OF MANY- It is easier to maintain and deploy changes when you’re developing

one application that runs across all platforms. Updates would immediately get synced across all devices

and platforms. Further, with tools like Appcelerator and PhoneGap, it becomes easy to handle one team

of developers working on a single multi-platform app than several teams working on different

platforms.

UNIFORM LOOK AND FEEL -The overall design and feel of the app can be maintained across

various platforms if there’s a single code running on all. When you’re designing different apps, it can be

hard to sync two different developers or teams of different levels of expertise.

http://www.cygnismedia.com/blog/tricks-for-businesses-using-mobile-apps/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

USE OF KNOWN TECHNOLOGIES- When you’re using tools like Appcelerator, you can

easily code in HTML5 and convert for different mobile platforms. This means you’re using resources

you already know about and converting them for deployment across different platforms. This leads us to

our next point…

HTML5 VS. MOBILE DEVELOPERS- It is harder to find mobile developers but relatively easy to

find good HTML, CSS and JavaScript coders. If you’re using HTML5, this means hiring for

development can be easier if you’re designing cross-platform apps.

REDUCED DEVELOPMENT COSTS- All this means you have reduced development costs when

making apps for multiple platforms. But before you make a decision, read on for the disadvantages…

Disadvantages of Developing for Multiple Platforms:

USER INTERACTION- iPhone and Android alone have significantly diverse screen layouts.

Designing one app that fits on both these and more platforms can be quite a task.

PLATFORM INTEGRATION- It’s not just the UI that is different. When it comes to integrating

the app with the local settings, preferences and notifications apps, you can be faced with serious trouble

trying to juggle multiple platforms. Even storage options are diversified so you may be looking at cloud

options and integration of third party cloud services with your app.

TRYING TO PLEASE EVERYONE- According to Christina Warren, you could be faced with the

same dilemma when developing an app for multiple platforms. She says, “a good cross-platform

application looks at home on whatever platform it is used on. A bad cross-platform tries to look

identical everywhere.” So it’s one thing being the same, and another being similar. You can’t be the

same on every platform, but have to adapt to each platform’s unique styles – a functionality you lose if

you’re creating one app for all.

LOSS OF FLEXIBILITY- Each platform provides its own flexibilities – that’s why they’re there

on the market. When you’re designing a cross-platform app, you’re forced to look at the commonalities.

This puts you at a disadvantage of losing the flexibility that each platform provides.

5 b) What is source control? Explain in brief the different functionalities provided by Source

Control System?

http://www.cygnismedia.com/blog/examples-of-html5-websites/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

A component of software configuration management, version control, also known as revision control or

source control,[1]:2 is the management of changes to documents, computer programs, large web sites, and

other collections of information. Changes are usually identified by a number or letter code, termed the

"revision number," "revision level," or simply "revision." For example, an initial set of files is "revision

1." When the first change is made, the resulting set is "revision 2," and so on. Each revision is

associated with a timestamp and the person making the change. Revisions can be compared, restored,

and with some types of files, merged.

 The need for a logical way to organize and control revisions has existed for almost as long as

writing has existed, but revision control became much more important, and complicated, when the era of

computing began. The numbering of book editions and of specification revisions are examples that date

back to the print-only era. Today, the most capable (as well as complex) revision control systems are

those used in software development, where a team of people may change the same files.

 Version control systems (VCS) most commonly run as stand-alone applications, but revision

control is also embedded in various types of software such as word processors and spreadsheets, e.g.,

Google Docs and Sheets[2] and in various content management systems, e.g., Wikipedia's Page history.

Revision control allows for the ability to revert a document to a previous revision, which is critical for

allowing editors to track each other's edits, correct mistakes, and defend against vandalism and

spamming.

 Software tools for revision control are essential for the organization of multi-developer projects.

 In computer software engineering, revision control is any kind of practice that tracks and

provides control over changes to source code. Software developers sometimes use revision control

software to maintain documentation and configuration files as well as source code.

 As teams design, develop and deploy software, it is common for multiple versions of the same

software to be deployed in different sites and for the software's developers to be working simultaneously

on updates. Bugs or features of the software are often only present in certain versions (because of the

fixing of some problems and the introduction of others as the program develops).

 Therefore, for the purposes of locating and fixing bugs, it is vitally important to be able to

retrieve and run different versions of the software to determine in which version(s) the problem occurs.

It may also be necessary to develop two versions of the software concurrently (for instance, where one

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Version_control#cite_note-Mercurial-1
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Writing
https://en.wikipedia.org/wiki/Edition_%28book%29
https://en.wikipedia.org/wiki/Specification_%28technical_standard%29
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Version_control#cite_note-2
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Help:Page_history
https://en.wikipedia.org/wiki/Spamming
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Computer_bug

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

version has bugs fixed, but no new features (branch), while the other version is where new features are

worked on (trunk).

 At the simplest level, developers could simply retain multiple copies of the different versions of

the program, and label them appropriately. This simple approach has been used on many large software

projects. While this method can work, it is inefficient as many near-identical copies of the program have

to be maintained. This requires a lot of self-discipline on the part of developers, and often leads to

mistakes. Consequently, systems to automate some or all of the revision control process have been

developed.

 Moreover, in software development, legal and business practice and other environments, it has

become increasingly common for a single document or snippet of code to be edited by a team, the

members of which may be geographically dispersed and may pursue different and even contrary

interests. Sophisticated revision control that tracks and accounts for ownership of changes to documents

and code may be extremely helpful or even indispensable in such situations.

Structure revision control manages changes to a set of data over time. These changes can be structured

in various ways.

 Often the data is thought of as a collection of many individual items, such as files or documents,

and changes to individual files are tracked. This accords with intuitions about separate files, but causes

problems when identity changes, such as during renaming, splitting, or merging of files. Accordingly,

some systems, such as git, instead consider changes to the data as a whole, which is less intuitive for

simple changes, but simplifies more complex changes.

 When data that is under revision control is modified, after being retrieved by checking out, this

is not in general immediately reflected in the revision control system (in the repository), but must

instead be checked in or committed. A copy outside revision control is known as a "working copy". As a

simple example, when editing a computer file, the data stored in memory by the editing program is the

working copy, which is committed by saving.

 Concretely, one may print out a document, edit it by hand, and only later manually input the

changes into a computer and save it. For source code control, the working copy is instead a copy of all

files in a particular revision, generally stored locally on the developer's computer in this case saving the

file only changes the working copy, and checking into the repository is a separate step.

https://en.wikipedia.org/wiki/Branching_%28revision_control%29
https://en.wikipedia.org/wiki/Trunk_%28software%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 If multiple people are working on a single data set or document, they are implicitly creating

branches of the data (in their working copies), and thus issues of merging arise, as discussed below. For

simple collaborative document editing, this can be prevented by using file locking or simply avoiding

working on the same document that someone else is working on.

 Revision control systems are often centralized, with a single authoritative data store, the

repository, and check-outs and check-ins done with reference to this central repository. Alternatively, in

distributed revision control, no single repository is authoritative, and data can be checked out and

checked into any repository. When checking into a different repository, this is interpreted as a merge or

patch.

The benefits of source control

• Easier backups of one, central location

• Easy development of new features

• Historical overview of changes

• Access control for revisions.

7 (a) short note –

(a) Audio formats-

An audio file format is a file format for storing digital audio data on a computer system. The bit

layout of the audio data (excluding metadata) is called the audio coding format and can be

uncompressed, or compressed to reduce the file size, often using lossy compression. The data can be a

raw bit-stream in an audio coding format, but it is usually embedded in a container format or an audio

data format with defined storage layer.

There are three major groups of audio file formats:

 Uncompressed audio formats, such as WAV, AIFF, AU or raw header-less PCM; Formats with

lossless compression, such as FLAC, Monkey's Audio (filename extension .ape), WavPack (filename

extension .wv), TTA, ATRAC Advanced Lossless, ALAC (filename extension .m4a), MPEG-4 SLS,

MPEG-4 ALS, MPEG-4 DST, Windows Media Audio Lossless (WMA Lossless), and Shorten (SHN).

https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Distributed_revision_control
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Audio_coding_format
https://en.wikipedia.org/wiki/Audio_compression_%28data%29
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/Container_format_%28digital%29
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/AIFF
https://en.wikipedia.org/wiki/Au_file_format
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Free_Lossless_Audio_Codec
https://en.wikipedia.org/wiki/Monkey%27s_Audio
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/WavPack
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/TTA_%28codec%29
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Apple_Lossless
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/MPEG-4_SLS
https://en.wikipedia.org/wiki/MPEG-4_ALS
https://en.wikipedia.org/wiki/MPEG-4_DST
https://en.wikipedia.org/wiki/Windows_Media_Audio#Windows_Media_Audio_Lossless
https://en.wikipedia.org/wiki/Shorten_%28file_format%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Formats with lossy compression, such as Opus, MP3, Vorbis, Musepack, AAC, ATRAC and

Windows Media Audio Lossy (WMA lossy).

➢ Uncompressed audio format

 One major uncompressed audio format, LPCM, is the same variety of PCM as used in

Compact Disc Digital Audio and is the format most commonly accepted by low level audio APIs

and D/A converter hardware. Although LPCM can be stored on a computer as a raw audio format,

it is usually stored in a .wav file on Windows or in a .aiff file on Mac OS. The AIFF format is based on

the Interchange File Format (IFF), and the WAV format is based on the similar Resource Interchange

File Format (RIFF). WAV and AIFF are not inherently lossless; they're designed to store a wide variety

of audio formats, lossless and lossy; they just add a small, metadata-containing header before the audio

data to declare the format of the audio data, such as LPCM with a particular sample rate, bit depth,

number of channels. Since WAV and AIFF are widely supported and can store LPCM,

➢ Lossless compressed audio format

 A lossless compressed format stores data in less space without losing any information.

The original, uncompressed data can be recreated from the compressed version.

 Uncompressed audio formats encode both sound and silence with the same number of

bits per unit of time. Encoding an uncompressed minute of absolute silence produces a file of the same

size as encoding an uncompressed minute of music. In a lossless compressed format, however, the

music would occupy a smaller file than an uncompressed format and the silence would take up almost

no space at all.

➢ Lossy compressed audio format

 Lossy compression enables even greater reductions in file size by removing some of the

audio information and simplifying the data. This of course results in a reduction in audio quality, but a

variety of techniques are used, mainly by exploiting psychoacoustics, to remove the parts of the sound

that have the least effect on perceived quality, and to minimize the amount of audible noise added

during the process. The popular MP3 format is probably the best-known example, but the AAC

format found on the iTunes Music Store is also common. Most formats offer a range of degrees of

compression, generally measured in bit rate. The lower the rate, the smaller the file and the more

significant the quality loss.

https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/Opus_%28audio_format%29
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Musepack
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Windows_Media_Audio#WIndows_Media_Audio_Lossy
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Interchange_File_Format
https://en.wikipedia.org/wiki/RIFF_%28File_format%29
https://en.wikipedia.org/wiki/RIFF_%28File_format%29
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
https://en.wikipedia.org/wiki/Audio_bit_depth
https://en.wikipedia.org/wiki/Audio_channel
https://en.wikipedia.org/wiki/Psychoacoustics
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Bit_rate

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

(b) Chroma key-

Chroma key compositing, or chroma keying, is a special effects / post-production technique

for compositing two images or video streams together based on color hues. The technique has been used

heavily in many fields to remove a background from the subject of a photo or video – particularly

the news-casting, motion picture and videogame industries. A color range in the top layer is made

transparent, revealing another image behind. The chroma keying technique is commonly used in video

production and post-production. This technique is also referred to as color keying, colour-separation

overlay primarily by the BBC, or by various terms for specific color-related variants such as green

screen, and blue screen – chroma keying can be done with backgrounds of any color that are uniform

and distinct, but green and blue backgrounds are more commonly used because they differ most

distinctly in hue from most human skin colors. No part of the subject being filmed or photographed may

duplicate a color used in the background.

It is commonly used for weather forecast broadcasts, wherein a news presenter is usually seen

standing in front of a large CGI map during live television newscasts, though in actuality it is a large

blue or green background. When using a blue screen, different weather maps are added on the parts of

the image where the color is blue. If the news presenter wears blue clothes, his or her clothes will also

be replaced with the background video. A complementary system is used for green screens. Chroma

keying is also used in the entertainment industry for special effects in movies and videogames. The

advanced state of the technology and much commercially available computer software, such

as Autodesk Smoke, Final Cut Pro, Pinnacle Studio, Adobe After Effects, and dozens of other computer

programs, makes it possible and relatively easy for the average home computer user to create videos

using the "chromakey" function with easily affordable green screen or blue screen kits.

(c) 3D graphics pipeline –

In 3D computer graphics, the graphics pipeline or rendering pipeline refers to the sequence of

steps used to create a 2D raster representation of a 3D scene.[1]Plainly speaking, once a 3D model has

been created, for instance in a video game or any other 3D computer animation, the graphics pipeline is

the process of turning that 3D model into what the computer displays.[2] In the early history of 3D

computer graphics, fixed purpose hardware was used to speed up the steps of the pipeline through

a fixed-function pipeline. Later, the hardware evolved, becoming more general purpose, allowing

https://en.wikipedia.org/wiki/Special_effects
https://en.wikipedia.org/wiki/Post-production
https://en.wikipedia.org/wiki/Compositing
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Video
https://en.wiktionary.org/wiki/background
https://en.wikipedia.org/wiki/News
https://en.wikipedia.org/wiki/Motion_picture
https://en.wikipedia.org/wiki/Videogame
https://en.wikipedia.org/wiki/Video_production
https://en.wikipedia.org/wiki/Video_production
https://en.wikipedia.org/wiki/BBC
https://en.wikipedia.org/wiki/Human_skin_color
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Broadcast
https://en.wikipedia.org/wiki/News_presenter
https://en.wikipedia.org/wiki/Computer-generated_imagery
https://en.wikipedia.org/wiki/Newscast
https://en.wikipedia.org/wiki/Movies
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Autodesk_Smoke
https://en.wikipedia.org/wiki/Final_Cut_Pro
https://en.wikipedia.org/wiki/Pinnacle_Studio
https://en.wikipedia.org/wiki/Adobe_After_Effects
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Graphics_pipeline#cite_note-1
https://en.wikipedia.org/wiki/Graphics_pipeline#cite_note-2
https://en.wikipedia.org/wiki/Fixed-function

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

greater flexibility in graphics rendering as well as more generalized hardware, and allowing the same

generalized hardware to perform not only different steps of the pipeline, like in fixed purpose hardware,

but even in limited forms of general purpose computing. As the hardware evolved, so did the graphics

pipelines, the OpenGL, and DirectX pipelines, but the general concept of the pipeline remains the same.

The 3D pipeline usually refers to the most common form of computer 3D rendering, 3D polygon

rendering, distinct from raytracing, and raycasting. In particular, 3D polygon rendering is similar to

raycasting. In raycasting, a ray originates at the point where the camera resides, if that ray hits a surface,

then the color and lighting of the point on the surface where the ray hit is calculated. In 3D polygon

rendering the reverse happens, the area that is in view of the camera is calculated, and then rays are

created from every part of every surface in view of the camera and traced back to the camera.

sequence operations handles only simple primitives by design point, lines, triangles, quads (as two

triangles) efficient algorithm complex primitives by tessellation complex curves: tessellate into line

strips complex surfaces: tessellate into triangle meshes "pipeline" name derives from architecture design

sequences of stages with defined input/output easy-to-optimize, modular design.

Vertex processing input: vertex data (position, normal, color, etc.) output: transformed vertices

in homogeneous canonical view-volume, colors, etc. applies transformation from object-space to clip-

space passes along material and shading data clipping and rasterization turns sets of vertices into

primitives and fills them in output: set of fragments with interpolated data.

Fragment processing output: final color and depth traditionally mostly for texture lookups

lighting was computed for each vertex today, computes lighting per-pixel framebuffer processing

output: final picture hidden surface elimination compositing via alpha-blending.

https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Raytracing
https://en.wikipedia.org/wiki/Raycasting

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

The following list specifies the purpose of each of the stages.

• Input-Assembler Stage - The input-assembler stage supplies data (triangles, lines and points) to

the pipeline.

• Vertex-Shader Stage - The vertex-shader stage processes vertices, typically performing

operations such as transformations, skinning, and lighting. A vertex shader always takes a single input

vertex and produces a single output vertex.

• Geometry-Shader Stage - The geometry-shader stage processes entire primitives. Its input is a

full primitive (which is three vertices for a triangle, two vertices for a line, or a single vertex for a

point). In addition, each primitive can also include the vertex data for any edge-adjacent primitives. This

could include at most an additional three vertices for a triangle or an additional two vertices for a line.

The geometry shader also supports limited geometry amplification and de-amplification. Given an input

primitive, the geometry shader can discard the primitive, or emit one or more new primitives.

• Stream-Output Stage - The stream-output stage streams primitive data from the pipeline to

memory on its way to the rasterizer. Data can be streamed out and/or passed into the rasterizer. Data

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205116(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146(v=vs.85).aspx#Vertex_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146(v=vs.85).aspx#Geometry_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205121(v=vs.85).aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

streamed out to memory can be recirculated back into the pipeline as input data or read-back from the

CPU.

• Rasterizer Stage - The rasterizer clips primitives, prepares primitives for the pixel shader, and

determines how to invoke pixel shaders.

• Pixel-Shader Stage - The pixel-shader stage receives interpolated data for a primitive and

generates per-pixel data such as color.

• Output-Merger Stage - The output-merger stage combines various types of output data (pixel

shader values, depth and stencil information) with the contents of the render target and depth/stencil

buffers to generate the final pipeline result.

• Hull-shader, tessellator, and domain-shader stages, which comprise the tessellation stages - The

tessellation stages convert higher-order surfaces to triangles for rendering within the Direct3D 11

pipeline.

e) sprites

CSS Sprites are a means of combining multiple images into a single image file for use on a website, to help with

performance.

Sprite may seem like a bit of a misnomer considering that you're create a large image as opposed to working with

many small ones, but the history of sprites, dating back to 1975, should help clear things up.

To summarize: the term "sprites" comes from a technique in computer graphics, most often used in video games.

The idea was that the computer could fetch a graphic into memory, and then only display parts of that image at a

time, which was faster than having to continually fetch new images. The sprite was the big combined graphic.

CSS Sprites is pretty much the exact same theory: get the image once, and shift it around and only display parts

of it. This reduces the overhead of having to fetch multiple images.

It may seem counterintuitive to cram smaller images into a larger image. Wouldn't larger images take longer to

load?

Let's look at some numbers on an actual example:

Image File Size Dimensions

canada.png 1.95KB 256 x 128

usa.png 3.74KB 256 x 135

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205125(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146(v=vs.85).aspx#Pixel_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205120(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476340(v=vs.85).aspx
http://en.wikipedia.org/wiki/Sprite_%28computer_graphics%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Image File Size Dimensions

mexico.png 8.69KB 256 x 147

That adds up to a total of 14.38KB to load the three images. Putting the three images into a single file weighs in at

16.1KB. The sprite ends up being 1.72KB larger than the three separate images. This isn't a big difference, but

there needs to be a good reason to accept this larger file... and there is!

While the total image size (sometimes) goes up with sprites, several images are loaded with a single HTTP

request. Browsers limit the number of concurrent requests a site can make and HTTP requests require a bit of

handshaking.

Thus, sprites are important for the same reasons that minifying and concatinating CSS and JavaScript are

important.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session
https://developers.google.com/speed/docs/insights/MinifyResources

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

GAMING ARCHITECTURE AND PROGRAMMING (GAP) MAY 2013 INFORMATION

TECHNOLOGY

SEMESTER 8

Con.8226-13. (REVISED COURSE) GS-3286

 (3 Hours) [Total Marks : 100]

N.B.: (1) Question No.1 is compulsory.

 (2) Attempt any four questions out of remaining six questions.

1. Explain the following in detail(any two) :- [20 Marks]

 (a) Implicit Invocation

 Event based, implicit invocation is an example of a well-crafted architectural style with high

cohesion and loose coupling. As such, it is one of the more broadly accepted architectural styles in

software engineering. Examples of implicit invocation systems abound, including virtually all modern

operating systems, integrated development environments, and database management systems.

 Garland and Shaw describe implicit invocation systems: "The idea behind implicit invocation is

that instead of invoking a procedure directly, a component can announce (or broadcast) one or more

events. Other components in the system can register an interest in an event by associating a procedure

with the event. When the event is announced the system itself invokes all of the procedures that have

been registered for the event. Thus an event 'implicitly' causes the invocation of procedures in other

modules."

 Implicit invocation systems are driven by events. Events are triggered whenever the system

needs to do something—such as respond to an incoming request. Events can take many forms across

different types of implementations; often for object-based systems an event is an object whose

properties contain any contextual information needed to process the event (similar to how a HTTP

request carries with it all its form and query-string variables).When an event is announced, the system

looks up listener components for that event. Listeners fit the same criteria for components that we’ve

already discussed—they are functional modules

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

of the system.

 Components that wish to act as listeners are registered to listen for certain events at

configuration time (by specification in an XML file, for instance). When an event is triggered, all

registered listeners of that event are passed the event by means of a dynamically- determined method

call. In this way, functions are implicitly invoked. This process of notifying listeners of an event is

called event announcement

 Events and listeners can themselves trigger other events. Let’s consider a how a common

Login authentication scenario can be represented in terms of events and listeners. In this example, a

login form is filled out by a user and the form submitted. The incoming HTTP request triggers the

creation of a LoginEvent, and the system populates the event with information in the request.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Next, the system determines the listeners for LoginEvent; in this case there is only one

—the AuthenticationListener. Determined by a configuration file, the system invokes the

AuthenticationListener’s tryLogin() method, passing to it the event. Based on information in the

event, the tryLogin() method will seek to authenticate the user. If the authentication succeeds, a

new LoginAcceptedEvent is triggered. If authentication fails, a new LoginFailedEvent is triggered. The

cyc le then continues, with any listeners of the new event being notified.

 Implicit invocation architectures differ from explicit invocation systems in that implicit

invocation system components use events to communicate with each other. Connectors in such

architectures are bindings between events and component methods. Because these bindings

are determined dynamically at runtime, components are loosely coupled; there is no compile-time

determination of which method calls will be made. Loose coupling offers software architects the great

benefit of increased flexibility and maintainability: new components can be

added by simply registering them as event listeners.

 Loosely coupled components work together, but do not rely on each other to do their own job.

The interaction policy is separate from the interacting components, providing flexibility.

Components can be introduced into a system simply by registering them for events of the system, aiding

greatly in reusability. Introduction of new components does not require change in other component

interfaces, providing scalability as new features are added. Overall, implicit invocation eases system

evolution.

 (b) Object factory

 The object factory is a class whose sole purpose is to allow the creation of families of objects.

This means that the code creating the objects is not tied in specifically to the objects that it is creating.

Usually, all the objects created by the factory derive from the same abstract base class, and are returned

to the requesting client as a reference to this class. You could also have multiple methods, Make

XXXX(), each returning a different base class, but personally we prefer to have one factory per object

family.

 For example, in Balls!, all of the tokens are created by an object factory. Among other things,

this makes the loading of levels very simple. Each token type has a unique ID, and loading a level is a

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

simple matter of passing that ID to the object factory, and making use of the pointer returned. One of the

other advantages of this is low-cost garbage collection and memory tracking.

 The object factory can keep track of all the objects that it allocates, inserting them into a list.

When these objects are deleted, they remove themselves from this list. If any of these objects have not

been freed at the end of the level, then they can either be cleaned up automatically or reported as errors.

This helped us find quite a few insidious little bugs in the code.

 Figure shows the class relationships. This describes how the objects are related to each other

programmatically. In Figure “game object factory” receives requests from clients to create a specific

“game object.” This factory class is responsible for creating all objects representing tokens within a

level, and keeps track of them by using a related class, the “memory tracker” class. The factory class

produces instantiations of the requested object, which are returned to the client as a pointer to the base

class of all in-game token classes, the game object class.

 The game object class contains a memory tracker class as an instantiated member variable.

When a game object class is instantiated, the memory tracker member is also instantiated as part of it.

When instantiated, the constructor of this class stores a reference to its owner (the enclosing game

object), and inserts itself into the list within the factory class.

 When the enclosing game object is deleted, the destructor of the member memory tracker is

invoked, which removes the reference to itself from the list within the factory class. When the factory

object is itself destroyed, it checks through the list to see if any remaining game objects have not been

deleted. These can be either freed automatically, or (preferably) reported as errors, to be tracked down

later.

 This sort of dynamic object creation is very flexible: With judicious use of the object factory, the

structure of whole applications can be determined at runtime. As long as all the objects returned by a

specific factory conform to the same interface and behavioral contracts, then it is possible to (for

example) configure levels dynamically with fairly simple code, allow customization of the user

interface, release game expansions that don’t need to modify the original game code, or accomplish any

number of tasks that would be tricky by other means.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : class relationships for the game object factory

 (c) Architectural style

 It is useful to organize human activity in games, but buildings aren't the most efficient way to do

it. There's no real need to visit a building called the "Town Hall" in an online game when you could just

send email to whoever works there; but the building provides a convenient metaphor for the functions

that the Town Hall provides. Theft, likewise, may or may not be possible in games; if it is possible, a

building provides a convenient metaphor for concealment and protection -- a way of indicating that an

item is inaccessible to thieves.

 In Age of Empires, once a resource is placed in the storage pit, it's protected from theft. The

storage pit is really a magic place that converts resources from being vulnerable and unusable, to

invulnerable and available for consumption. The game could call it anything it likes, but it calls it a

building. It's not much like a real building, though: it never fills up, and if you burn it down you don't

lose the contents. The Treasury in Dungeon Keeper was more like a real treasury: it could get full, and

people could steal money out of it if it wasn't guarded.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Two functions that do translate over directly are military activity and general decoration. Just

about all wargames make use of constructed edifices as a means of concealment and protection for

troops, and any game that tries to create a sense of place uses architecture to define how that place feels

to be. In short, buildings in games mimic the real world when necessary or aesthetically desirable, but

this is not always the case. There are no buildings in chess.

 Games do have a problem portraying outdoor spaces. Because of the limitations of looking at a

monitor, we can't create sweeping vistas or panoramas that feel like the real thing. If you've ever tried

to photograph the emptiness of a desert or the Great Plains, you'll know what I mean: an essential part

of the experience is the sense of being surrounded by vast open space. Players sitting in a room,

looking at a CRT, never feel that way. Another part of that sensation comes from the sheer length of

time it takes to get anywhere. Most games allow you to move pretty fast -- no more than a few minutes

to walk from one side of the world to the other so, the sense of scale is diminished. And of course

aerial perspectives reduce the impressiveness of everything: the Great Pyramid is no big deal from 5000

feet up.

 We're not very good at natural objects, either. In 3D games, straight lines are cheap and curves

are expensive, so we tend to avoid curves. But look at an oak leaf: it's nothing but curves. With

thousands of leaves per tree and thousands of trees in a forest, there's a good reason why we leave

forests alone. As a result, most 3D games tend to feel rather sparse and sterile. Bauhaus, yes; botanical

gardens, no.

 The primary function of architecture in games is to support the gameplay. Buildings in games

are not analogous to buildings in the real world, because most of the time their real-world functions are

either irrelevant -- the real-world activity that the building serves isn't meaningful in the game -- or

purely metaphorical. Rather, buildings in games are analogous to movie sets: incomplete, false fronts

whose function is to support the narrative of the movie. Movie sets create context and support

suspension of disbelief. They also diverge from the real world for narrative purposes. Consider New

York as seen in a movie by Woody Allen, who loves the place, versus New York as seen in Taxi

Driver. Sets are part of the story; they can make a place seem more (or less) beautiful, dangerous,

tacky, etc. than it really is.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Gameplay (in non-social games) consists of challenges and actions taken to overcome them;

architecture supports the gameplay by helping to define the challenges. There are four major ways in

which this happens: constraint, concealment, obstacles or tests of skill, and exploration.

 Constraint: In board games like chess and checkers, there are no boundaries except for the edge

of the board. The challenge of the game is created by the rather arbitrary rules governing how the

pieces may move. In representational games, we want units to move the way they would in real life,

not according to some artificial rule; but most of the time we don't want them moving anywhere they

like. Architecture establishes boundaries that limit the freedom of movement of avatars or units. It also

establishes constraints on the influence of weapons. As a general rule, projectiles do not pass through

walls (no matter how flimsy) nor do explosions knock them down, nor fires burn through them.

 Concealment: Few computer games are games of perfect information, in which the player

knows everything there is to know about the state of the game. Architecture is used to hide valuable

(and sometimes dangerous) objects from the player; it's also used to conceal the players from one

another, or from their enemies.

 Obstacles and tests of skill: Chasms to jump across, cliffs to climb, trapdoors to avoid -- all

these are part of the peculiar landscape architecture of computer games. Some of them can be

surmounted by observation and logic, others by hand-eye coordination.

 Exploration: Not quite the same as overcoming obstacles, exploration challenges the player to

understand the shape of the space he's moving through, to know what leads to where. Mazes are of

course one of the oldest examples of such a challenge. If the game doesn't give the player a map, he

may have to rely on his memory to learn his way around. In recent years we have started making better

use of subtle clues: sunlight coming through a window means that we're near the outside; a differently-

shaded patch of wall indicates a secret door.

 Persistent worlds like Everquest use buildings for a variety of social functions as well, of

course, but as those are largely obvious and symbolic, I won't address them here.

 Some time ago I came across the website of Canadian game designer Peter Lo). Included on his

site was a sketch of a long ventilation shaft leading from the roof of a building straight down into an

equipment room on the ground floor. The sketch included the following notation:

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Considered as real-world architecture, this is isn't very sensible. The fans must blow out rather

than in (that's why you don't plummet if you jump in while they're on). You might need two fans in

order to move a given volume of air, but why would you need two sets of shutters? And why in the

world are the shutters electrified? Above all, the remainder of the building is undefined. Like a movie

set, it's just a false front, a container for the ventilation shaft and the equipment room below.

 As game design, however, it's perfectly functional, though not entirely obvious to the

inexperienced gamer. It supplies constraint (the player starts on the roof and must go down the

ventilation shaft to get to the equipment room); an obstacle challenge (the fan blades and electrified

shutters which, reading between the lines, we can tell must go on and off at intervals); and an

exploration challenge (the player doesn't know what's at the bottom of the shaft until she gets there).

2. (a) Explain different types of game genre with an example. [10 Marks]

 A video game genre is a specific category of games related by a common gameplay

characteristic. Genres are not usually defined by the actual content of the game or its medium of play,

but by its common challenge.[1]

 Genres may encompass a wide variety of games, leading to even more specific classifications

called subgenres. For example, an action game can be classified into many subgenres such as platform

games and fighting games. Some games, most notably browser and mobile games, are commonly

classified into multiple genres.

 The following is a list of all commonly-defined video game genres, with short descriptions for

individual genres

 Action games emphasize physical challenges that require eye-hand coordination and motor skill

to overcome. They center around the player, who is in control of most of the action. Most of the earliest

video games were considered action games; today, it is still a vast genre covering all games that involve

physical challenges.

 Action games are classified many subgenres. Platform games and fighting games are among the

best-known subgenres, while shooter games became and continue to be one of the dominant genres in

video gaming since the 1990s. Action games usually involve elements of twitch gameplay.

https://en.wikipedia.org/wiki/Video_game_genre
https://en.wikipedia.org/wiki/List_of_video_game_genres#cite_note-adams2013-c3s1-1
https://en.wikipedia.org/wiki/Action_game
https://en.wikipedia.org/wiki/Platform_game
https://en.wikipedia.org/wiki/Platform_game
https://en.wikipedia.org/wiki/Fighting_game
https://en.wikipedia.org/wiki/Browser_game
https://en.wikipedia.org/wiki/Mobile_game
https://en.wikipedia.org/wiki/Eye-hand_coordination
https://en.wikipedia.org/wiki/Motor_skill
https://en.wikipedia.org/wiki/Platform_games
https://en.wikipedia.org/wiki/Fighting_games
https://en.wikipedia.org/wiki/Shooter_games
https://en.wikipedia.org/wiki/Twitch_gameplay

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Platform games

 Platform games are set in an environment with platforms, hence the name platform

game.Platform games (or platformers) are set in a vertical or three-dimensional (3D)

environment. Players guide a character through obstacles, jumping on platforms and battling

enemies in order to advance. They often involve unrealistic physics and special movement

abilities.

 Donkey Kong was one of the earliest and best-known platformers; the American gaming

press classified it using the term climbing game at the time Super Mario Bros. was one of the

best-selling games of all time; more than 40 million copies were sold (excluding Game Boy

Advance and Virtual Console sales). Jumping Flash! introduced 3D graphics to the genre, being

the first console platformer to incorporate 3D graphics.

➢ Action-adventure

 Action-adventure games combine elements of their two component genres, typically

featuring long-term obstacles that must be overcome using a tool or item as leverage (which is

collected earlier), as well as many smaller obstacles almost constantly in the way, that require

elements of action games to overcome. Action-adventure games tend to focus on exploration and

usually involve item gathering, simple puzzle solving, and combat. "Action-adventure" has

become a label which is sometimes attached to games which do not fit neatly into another well

known genre.

 The first action-adventure game was the Atari 2600 game Adventure (1979). It was

directly inspired by the original text adventure, Colossal Cave Adventure. In the process of

adapting a text game to a console with only a joystick for control, designer Warren Robinett

created a new genre. Another typical Action-Adventure game is "The Legend of Zelda" by

Nintendo, which involves puzzle solving, sword fighting, and item collecting. Because of their

prevalence on video game consoles and the absence of typical adventure games, action-

adventure games are often called "adventure games" by modern gamers.

➢ Stealth game

 Stealth games are a somewhat recent subgenre, sometimes referred to as "sneakers" or

"creepers" to contrast with the action-oriented "shooter" subgenre. These games tend to

emphasize subterfuge and precision strikes over the more overt mayhem of shooters, for

example, the Sly Cooper series.

https://en.wikipedia.org/wiki/Donkey_Kong_%28video_game%29
https://en.wikipedia.org/wiki/Super_Mario_Bros.
https://en.wikipedia.org/wiki/Game_Boy_Advance
https://en.wikipedia.org/wiki/Game_Boy_Advance
https://en.wikipedia.org/wiki/Virtual_Console
https://en.wikipedia.org/wiki/Jumping_Flash%21
https://en.wikipedia.org/wiki/Action-adventure_game
https://en.wikipedia.org/wiki/Atari_2600
https://en.wikipedia.org/wiki/Adventure_%28Atari_2600%29
https://en.wikipedia.org/wiki/Text_adventure
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Warren_Robinett
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Adventure_game
https://en.wikipedia.org/wiki/Stealth_game
https://en.wikipedia.org/wiki/Sly_Cooper

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Adventure

 Adventure games were some of the earliest games created, beginning with the text

adventure Colossal Cave Adventure in the 1970s. That game was originally titled simply

"Adventure," and is the namesake of the genre. Over time, graphics have been introduced to the

genre and the interface has evolved.

 Unlike adventure films, adventure games are not defined by story or content. Rather,

adventure describes a manner of gameplay without reflex challenges or action. They normally

require the player to solve various puzzles by interacting with people or the environment, most

often in a non-confrontational way. It is considered a "purist" genre and tends to exclude

anything which includes action elements beyond a mini game.

 Because they put little pressure on the player in the form of action-based challenges or

time constraints, adventure games have had the unique ability to appeal to people who do not

normally play video games. The genre peaked in popularity with the 1993 release of Myst, the

best-selling PC game of all time up to that point. It had four proper sequels, but none managed to

experience the same level of success. The success of Myst also inspired many others to create

similar games with first person perspectives, surreal environments and minimal or no dialogue,

but these neither recaptured the success of Myst nor of earlier personality-driven adventures.

➢ Role-playing video games draw their gameplay from traditional role-playing games like

Dungeons & Dragons. Most of these games cast the player in the role of one or more

"adventurers" who specialize in specific skill sets (such as melee combat or casting magic spells)

while progressing through a predetermined storyline. Many involve manoeuvring these

character(s) through an overworld, usually populated with monsters, that allows access to more

important game locations, such as towns, dungeons, and castles.

 Since the emergence of affordable home computers coincided with the popularity of

paper and pencil role-playing games, this genre was one of the first in video games and

continues to be popular today. Gameplay elements strongly associated with RPGs, such as

statistical character development through the acquisition of experience points, have been widely

adapted to other genres such as action-adventure games.

https://en.wikipedia.org/wiki/Adventure_game
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Mini_game
https://en.wikipedia.org/wiki/Myst
https://en.wikipedia.org/wiki/Role-playing_video_game
https://en.wikipedia.org/wiki/Role-playing_game
https://en.wikipedia.org/wiki/Dungeons_%26_Dragons
https://en.wikipedia.org/wiki/Magic_%28gaming%29
https://en.wikipedia.org/wiki/Overworld
https://en.wikipedia.org/wiki/Home_computer
https://en.wikipedia.org/wiki/Paper_and_pencil_game
https://en.wikipedia.org/wiki/Experience_point
https://en.wikipedia.org/wiki/Action-adventure_game

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Though nearly all of the early entries in the genre were turn-based games,

 many modern role-playing games progress in real-time. Thus, the genre has followed the

 strategy game's trend of moving from turn-based to real-time combat.

 (b) Discuss the contents of game design document. [10 Marks]

 A game design document may be made of text, images, diagrams, concept art, Concept art is a

form of illustration used to convey an idea for use in films, video games, animation, comic books or

other media before it is put into the final product.[1] Concept art is also referred to as visual development

and/or concept design. This term can also be applied to retail, set, fashion, architectural and industrial

design.

 Concept art is developed in several iterations. Artists try several designs to achieve the desired

result for the work, or sometimes searching for an interesting result. Designs are filtered and refined in

stages to narrow down the options. Concept art is not only used to develop the work, but also to show

the project's progress to directors, clients and investors. Once the development of the work is complete,

advertising materials often resemble concept art, although these are typically made specifically for this

purposed, based on final work or any applicable media to better illustrate design decisions.

 Some design documents may include functional prototypes Software prototyping is the activity

of creating prototypes of software applications, i.e., incomplete versions of the software program being

developed. It is an activity that can occur in software development and is comparable to prototyping as

known from other fields, such as mechanical engineering or manufacturing.

A prototype typically simulates only a few aspects of, and may be completely different from, the final

product.

 Prototyping has several benefits: The software designer and implementer can get valuable

feedback from the users early in the project. The client and the contractor can compare if the software

made matches the software specification, according to which the software program is built. It also

allows the software engineer some insight into the accuracy of initial project estimates and whether the

deadlines and milestones proposed can be successfully met. The degree of completeness and the

https://en.wikipedia.org/wiki/Turn-based_game
https://en.wikipedia.org/wiki/Strategy_game
https://en.wikipedia.org/wiki/Concept_art
https://en.wikipedia.org/wiki/Illustration
https://en.wikipedia.org/wiki/Films
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Comic_books
https://en.wikipedia.org/wiki/Concept_art#cite_note-1
https://en.wikipedia.org/wiki/Retail_design
https://en.wikipedia.org/wiki/Set_design
https://en.wikipedia.org/wiki/Fashion_design
https://en.wikipedia.org/wiki/Architectural_design
https://en.wikipedia.org/wiki/Industrial_design
https://en.wikipedia.org/wiki/Industrial_design
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Prototyping
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Manufacturing
https://en.wikipedia.org/wiki/Program_specification
https://en.wikipedia.org/wiki/Milestone

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

techniques used in the prototyping have been in development and debate since its proposal in the early

1970s or a chosen game engine

 A game engine is a software framework designed for the creation and development of video

games. Developers use them to create games for consoles, mobile devices and personal computers. The

core functionality typically provided by a game engine includes a rendering engine (“renderer”) for 2D

or 3D graphics, a physics engine or collision detection (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading, localization

support, and a scene graph. The process of game development is often economized, in large part, by

reusing/adapting the same game engine to create different games, or to make it easier to "port" games to

multiple platforms for some sections of the game.

 Although considered a requirement by many companies, a GDD has no set industry standard

form. For example, developers may choose to keep the document as a word processed document,

Concept art is a form of illustration used to convey an idea for use in films, video games, animation,

comic books or other media before it is put into the final product. Concept art is also referred to as

visual development and/or concept design. This term can also be applied to retail, set, fashion,

architectural and industrial design.

 Concept art is developed in several iterations. Artists try several designs to achieve the desired

result for the work, or sometimes searching for an interesting result. Designs are filtered and refined in

stages to narrow down the options. Concept art is not only used to develop the work, but also to show

the project's progress to directors, clients and investors. Once the development of the work is complete,

advertising materials often resemble concept art, although these are typically made specifically for this

purposed, based on final work or as an on-line collaboration tool. Collaborative software or groupware

is an application software designed to help people involved in a common task to achieve their goals.

One of the earliest definitions of collaborative software is 'intentional group processes plus software to

support them.

 Collaborative software is a broad concept that overlaps considerably with computer-supported

cooperative work (CSCW) groupware is part of CSCW. The authors claim that CSCW, and thereby

groupware, addresses "how collaborative activities and their coordination can be supported by means of

computer systems." Software products such as email, calendaring, text chat, wiki, and bookmarking

belong to this category whenever used for group work, whereas the more general term social software

https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game_developer
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
https://en.wikipedia.org/wiki/2D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Physics_engine
https://en.wikipedia.org/wiki/Collision_detection
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Game_AI
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Scene_graph
https://en.wikipedia.org/wiki/Game_development
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Word_processing
https://en.wikipedia.org/wiki/Illustration
https://en.wikipedia.org/wiki/Films
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Comic_books
https://en.wikipedia.org/wiki/Retail_design
https://en.wikipedia.org/wiki/Set_design
https://en.wikipedia.org/wiki/Fashion_design
https://en.wikipedia.org/wiki/Architectural_design
https://en.wikipedia.org/wiki/Industrial_design
https://en.wikipedia.org/wiki/Collaborative_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Computer-supported_cooperative_work
https://en.wikipedia.org/wiki/Computer-supported_cooperative_work
https://en.wikipedia.org/wiki/Text_chat
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Enterprise_bookmarking
https://en.wikipedia.org/wiki/Social_software

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

applies to systems used outside the workplace, for example, online dating services and social

networking sites like Twitter and Facebook.

 The use of collaborative software in the work space creates a collaborative working environment

(CWE).

 Finally, collaborative software relates to the notion of collaborative work systems, which are

conceived as any form of human organization that emerges any time that collaboration takes place,

whether it is formal or informal, intentional or unintentional. Whereas the groupware or collaborative

software pertains to the technological elements of computer-supported cooperative work, collaborative

work systems become a useful analytical tool to understand the behavioral and organizational variables

that are associated to the broader concept of CSCW.

3. (a) What do you understand by blue sky research? Why is it dangerous? [10 Marks]

We would all love to spend all day in front of a computer munching pizza and guzzling coffee, freely

engaging our creativity and researching whatever we like. Some companies do allow this and have

active (if somewhat variable) research departments. That’s a good thing. Research is essential to the

survival of a company. It’s blue-sky research that you have to be careful about. By definition, any

technology present in games currently available in the shops is about 18 months behind what is

currently being worked on by the best design houses.

 In other words, even with the best will in the world, it is statistically unlikely that anything

remotely useful will be achieved, except a rather tragic comedy of errors. When a game project depends

on the outcome of research that has not been completed, that project is in great danger. Putting anything

in the critical path for which the outcome cannot be predicted is sheer idiocy; but for some reason—

whether greed, stupidity, or just plain ignorance—development teams seem to do this on a regular basis.

 We’re not advocating that research should be abolished; that would be a draconian measure and

would lead to further stagnation of the industry. What we are saying is that there is a time for research

and a time for development, and that the two should never overlap. Any research that is instigated

should be directed research. It should have an aim.

https://en.wikipedia.org/wiki/Online_dating_service
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Social_networking_site
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Collaborative_working_environment
https://en.wikipedia.org/wiki/Collaborative_work_systems

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 An example would be the design and development of a library useful in fuzzy-logic

calculations. For sure, there would be a fair amount of research involved, but this would be research into

ways of optimizing and improving on known techniques. The blue-sky alternative would be to look for

a completely new method of doing things. Fortunately, there is very little you can imagine doing with a

computer that hasn’t been already done by someone somewhere.

 If you’re very lucky, then they have published their results. Building on the work of others,

although less glamorous, is a surer way of getting good results. Besides, if you wanted glamour then

why did you become a developer? When your team is researching, set a strict time limit and stick to it

ruthlessly. Run with what you physically have at the end of the research period, not with what you are

promised at the beginning.

 The time allocated for research should also factor in the time necessary to bring the research

project to a successful conclusion and with a stable and well-documented component. As the research

progresses, more and more unknowns will become quantifiable. As soon as the fundamental technique

being researched is working, a mini-schedule can be drawn up to allow for this tidying-up procedure. If

the game design depends on this research, then this is the single most critical point of the whole

development.

 The project will succeed or fail—right here, right now—dependent on the success of this

research project. Obviously, this is not a good idea: Gambling the whole project on blue-sky research is

a game that only the very foolhardy or the extremely desperate would play. Remember, any safety net is

better than no safety net. If no safety net is possible, then “make-or-break” research should be avoided.

It’s too much of a risk, no matter how cool the developer doing the research is.

 Under most circumstances, releasing the product is better than canning it. Only the most cash-

rich companies will be able to afford internal research such as that used during the development

processes of Die by the Sword and Outcast. Not so many companies are able to afford the protracted

development times and the risks that are associated with research of this nature. If your company

doesn’t have the sort of cash available to finance a research department, you still have a few options

open.

 The first, and most undesirable, is to avoid projects that require R&D. This is only really

acceptable for the “ticking-over-and-we-know-we’ll-only-sell-a-couple-of hundred- thousand-or-so”

type of company. This is a viable option, but it isn’t going to go anywhere fast.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 For the less-affluent companies, another option is to form links with academia. Forming a loose

relationship with universities and their computing departments can provide some good technology at

some very good prices. A company that we have worked for in Belgium used their local university as a

source of cutting-edge cryptography algorithms and regularly tested their latest algorithm designs by

letting the university researchers loose on them. The theory was that any implementations of algorithms

that these university cryptography experts couldn’t crack were pretty much guaranteed to be secure.

 If you use the “external research” system, then this also simplifies some other company

decisions. Form a liaison with academia: A good relationship means that they get to publish and you get

to use their new ideas. Yet another option is to be part of a large conglomerate, either using the

Hollywood studio model or the loose alliance model typified by Lionhead’s satellite. The latter may not

be an optimal system.

 To optimize it you need to ensure that the separate development teams are aware of and able to

share each other’s technology. Also you would ideally organize collateral R&D so that two companies

don’t waste time on the same tasks, all of which is best achieved by appointing a resource investigation

unit to interface between all the projects in development. A loose development alliance can work,

therefore, but it needs structure.

 (b) What are the various phases in game development? State the process, people involved and

the outcome of each phase. [10 Marks]

➢ Step One: Initial Planning

 The Genesis Gaming Design and Marketing teams will meet with the client to determine the key

concepts driving the development of a strategic game portfolio. This will address issues such as analysis

of an existing portfolio, current demographics, additional player acquisition and retention, emerging

trends and profiles. We will further discuss a range of themes, volatility levels, features, bonus games

and any other aspect required for bespoke development of a strategic portfolio. It is also important that

there is an overall marketing discussion to determine how the games can be used to further extend the

client’s brand.

➢ Step Two: Technical Review

http://gen-game.com/company/game-development-process/#toggleOne5
http://gen-game.com/company/game-development-process/#toggleOne18

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Our Engineering Team will review documentation provided by the client to determine if there

are any technical questions or matters that need to be addressed to best develop to a specific

platform.This will ultimately save significant time in the integration process.

➢ Step Three: Initial Themes & Concept Art

 We will submit themes, names, concept art and descriptions for consideration and approval or

modification. We will then work with the client to determine portfolio development priorities.

This allows the ability to set expectations as to game delivery. The client can then implement a schedule

for marketing and release.

➢ Step Four: Features and Mathematics

 Our Game Design and Mathematics departments will determine and create unique math models

that best represent the client’s objectives as stated through the analytical process and the client’s

objectives. Math will be verified and all required percentages will be provided.

➢ Step Five: Art and Creative Design

 The Genesis Gaming Art Department will design and submit static art and design elements for

approval. Subsequently, our Animation and Music Composition teams will finalize the game. This will

require the client to provide appropriate documentation such as templates and other substantive game

specifications for consistency.

Upon completion, our Demo team will provide a playable version of the game for additional review.

➢ Step Six: Integration

 Upon approval, our Engineering Department will integrate the game to the appropriate provider

platform. This requires the necessary documentation, such as an API, from the client along with server

support, assuming it is not an “asset only” delivery. We place a significant emphasis on product

assurance and quality control so the game will be very “client provider friendly.”

➢ Step Seven: Delivery

 All game assets, in the requested file formats, including all release documentation will be

provided according to contractually specified delivery requirements. Genesis Gaming is also happy to

provide any material that may be requested for the client’s marketing campaign.Since success is our

http://gen-game.com/company/game-development-process/#toggleOne14
http://gen-game.com/company/game-development-process/#toggleOne94
http://gen-game.com/company/game-development-process/#toggleOne35
http://gen-game.com/company/game-development-process/#toggleOne60
http://gen-game.com/company/game-development-process/#toggleOne63

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

mutual objective, it is our goal to make certain that the client has all tools possible to promote the best

exclusive content in the industry

4. (a) Identify the tokens of any game of your choice and draw: [10 Marks]

 (i) Token Interaction Matrix

 Tokens do not interact with each other on their own. An occurrence of an event causes the

interaction. A token interaction matrix is a chart of all interactions that take place in the game. It helps

when deciding the object-oriented architecture. The interactions can be of the following types:

• Symmetric interaction: If the interaction is same in both the ways. Denoted as “-”

• Asymmetric Interaction: This interaction depends on the direction

 Symmetric interactions are the same both ways. For example, the behavior of the ball and the bat

are not different depending on how we consider the collision. That is, if we say that the ball collides

with the bat, we would expect exactly the same results to occur as if we had said the bat collides with

the ball. The semantics do not matter.Symmetric interactions are shown as squares in the matrix.

 Asymmetric interactions are shown in the matrix as a square split into two triangles. An

asymmetric interaction is different depending on the direction. In this case, the semantics do matter.

Each triangle represents one direction of the interaction. Taking the solitary case from the Pong matrix

as an example, we could say that a goal causes the score to increment by one, but the score incrementing

by one does not cause a goal to occur—cause-effect, not effect-cause. (There’ll be no breaking the laws

of causality in this book!) The matrix allows us to perform a visual check on our interactions. We can

check that they are what we would expect, and we can see if we have missed any or made any errors.

We may be able to spot unexpected chain reactions (the sort of things that in some cases will enhance a

game, but in other cases will render it virtually unplayable). These things will be picked up in play-

testing, but the sooner it is spotted the cheaper it is to fix.Some interactions are not to be considered at

all depending on Rules of game .Denoted by “X”

 (ii)Token Class Hierarchy

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

In general, a token is an object that represents something else, such as another object (either physical or

virtual), or an abstract concept as, for example, a gift is sometimes referred to as a token of the. We can

also consider these tokens to be arranged in a form of hierarchical structure.

The playing area, or game world, in itself is at the top of the hierarchy. From then on in, it is an

essentially flat hierarchy.

Figure :The Pong token hierarchy.

 The game world token contains all the other tokens. Obviously every token has to operate within

the game world in order to form a part of the game. The player avatar token is the representation of the

player within the game world. It is effectively a channel for the user interface between the player and

the game.

 The player avatar for Pong is very simple; it is merely a bat and a score. These are how the

player is represented in Pong. The other tokens—those manipulated by the computer—are the ball, the

walls, and the goal zones.

 Now it’s time for a little sleight of hand of the sort that is possible with only the written word.

Reread the two paragraphs, and for every instance of the word “token,” read it as “object.”

 So, if we were just talking about objects all along, why didn’t we just use the word “object” to

start with?

 The main reason—and why we particularly like the use of the word token and why we will

continue using it from here on in—is that these conceptual tokens may not have a one-to-one mapping

with the programming language objects (for example, in C++) that are defined by the programmers.

What we are trying to do is to break down the game design into conceptual objects that will eventually

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

be translated into programming language objects. This tokenization process is an intermediary stage in

the production of a decent architecture. In order to describe this without causing confusion, we need to

use different terminology for each type of object.

 The tokenization of a game design such as Pong is fairly trivial, and there’s really only one way

to do it. In spite of this, it makes an excellent example to try to demonstrate the thought processes

behind tokenization. Not all games will be so trivial, and, for some more complex games, there may be

many ways, all of which are equally valid. So now we have a set of tokens. On their own, they are not

very exciting as they do not interact with one another. But as we know, in Pong there are all sorts of

interactions going on. Well, one anyway: collisions.

 We can now define an event—the collision event. Let’s say that a collision event is generated

when two tokens collide. The net result of this event is that each token receives a message telling it that

a collision has occurred, and the type of object it has collided with.

 The token interaction matrix is a very important construct. It is a chart of all the interactions that

take place in the game. Note that for very large games we would not use a token-token matrix directly.

Instead we would introduce an extra layer of abstraction by using token-property and/or property-

property.

 Okay, so let’s look at the Pong token interaction matrix. The matrix is arranged in a triangular

format, with each token listed along the side and the bottom. An unusual feature of Pong is that tokens

do not come into contact with other tokens of the same type. This immediately means that the token-

token interactions for bat-bat, ball-ball, wall-wall, goal-goal, and score-score can be discounted. Due to

the nature of the game, the following interactions can also be discounted: bat-goal, wall-goal, score-bat,

score-ball, and score-wall.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : The Pong token interaction matrix.

 (b) Mention the components in the main tiers of game architecture. [10 Marks]

One of the most effective development models for game development is the “waterfall,”

“spiral,” or “tier-based” method.“Development,”suffice it to say that these methods reduce

the development into discrete tiers, with each tier taking into account what was built

before, and what will be built ahead. Thus, we approach the architecture design in a

holistic fashion. By this, we mean that, even as we split the architecture into a series of tiers,

we still keep an eye on the whole architecture. When designing the architecture of a module,

we first try to define the interface that will be required. The best starting approach is to build

the skeleton of what we will need. Implementing this skeleton is the main aim of the first

tier, and subsequent tiers concentrate on fleshing out the framework, filling in and replacing

stubbed-out functionality with the real deal.

Tier Zero: The Prototype : Of course, it would be difficult to leap straight in and

implement the skeleton correctly the first time you try, so we need to take this into account

when designing the architecture. We do this via prototyping techniques. Prototyping is a

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

risk-reduction mechanism, allowing us to explore and evaluate simulated risks before we

have to tackle them for real. We will be considering four main types in varying levels of

detail.

• Gameplay prototype—The most important consideration!

• User-interface prototype—How does the game interact with the player?

• Subsystem prototypes—How do all the subsystems interact with each other? What interfaces

do they export for use with other systems?

• Algorithm prototypes—What is the best algorithm to use for a given situation? Is it suitable

to be abstracted behind an interface so that we can literally “plug and play” the algorithm?

In fact, the prototype is really the very first part of defining the architecture. We

could say that the prototype is Tier Zero in the development model. Tier Zero is really a

special case, before we get into the architecture proper. We need to be able to test our game

design ideas, refine them, and work out what we need to do in order to efficiently implement

our tier-based architecture. This tier of our project isn’t really one of the main tiers. It’s

really a “pre-project” investigation. How are we going to put our architecture together? What

will work? What doesn’t? How does our game design hold up to interrogation under the

harsh light of critical analysis?

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

When developing the components for the game (and we are still talking within the realms

of the hard architecture here), then we should be drawing on the components developed by the

software factory system.

When building the architecture, we should take into account whether we can make use of

already existing components, whether they are in-house or not. Increasingly, it seems that the

biggest factor in game development seems to be the time to market, so any use of existing

components that can shave precious time off the schedule should be seriously considered.

The buzzwords that we need to keep in mind are component-based architecture. If we

build our architecture up piece by piece, selecting each piece from a virtual catalog (as the

Victorian English did when they built their houses from pattern books), then we should end up

with a cleaner and more segmented architecture.

Even big players such as Sony have seen the benefits of this scheme—which has been

dubbed middleware—and are leveraging those benefits by licensing third-party physics engines

and other components to incorporate into their developer SDK for the PlayStation 2.

Figure 2.1 The architecture of game

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

In the situations in which we have to develop a new component for our project, we

should consider the potential for reuse. Most game platforms nowadays are powerful enough so

that we simply do not need to put any of the game-specific code into hard architecture modules.

There really is no excuse for missing reuse opportunities, because the major opportunities for

reuse are going to be at the level of the hardware interface and general algorithm.

It’s quite easy to imagine reusing a graphics engine or a sound engine, which are at the

lowest level of granularity within our architecture, but with a little effort we can also reuse

components from higher in the hierarchy. For example, with careful design we can produce a

menuing system that can be used across a number of projects.

This is not such a strange concept—after all; a large part of Windows itself is taken up by

a common user interface that can be used across projects. This does not mean that we’d want our

games to conform to the Windows user interface because we would consider them boring, but

the concept can be stolen and used to provide a simple configurable menu system that we could

happily use across an entire range of projects without the customers even noticing that we had

reused the code.

This is not the only opportunity within the architecture for reuse. You’ll find plenty more

as computers become more powerful and are able to take up the slack required to support the

extended demands of a completely soft architecture.

5. (a) What are hard and soft architectures? Which one is preferred for easy maintenance and

why? [10 Marks]

When we begin to consider the actual architecture of the game (refer figure 2.1), we need also to

consider how to construct it around the planning needs of the schedule. “Milestones and Deadlines”.

Each milestone will specify the technical requirements to complete a particular tier. As we have been

discussing, the architecture is specified in three main stages, each of which expands into a number of

tiers.The three stages are:

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

• Prototyping : The prototyping stage allows us to have a dress rehearsal of the full

architecture, allowing us to tackle any tricky points and difficulties that we might encounter.

Of course, this doesn’t mean that we are going to be able to cover all of these difficulties, but

we can tackle at least the more obvious ones, and, of course, we will be able to explore

gameplay issues sooner than we would be able to otherwise.

• Hard-architecture design : The hard-architecture design stage involves the laying of the game

framework. However, the point of using a component- based design is to produce a set of

generic components that can be used across projects. Hard-architecture components would

need to be upgraded and augmented in order to keep up with emerging technology, but, with

a sensible set of interfaces, the disruption caused by this continual upgrade (not replacement)

process would be minimal. Only after a few projects have been undertaken will we see any

benefits from reusing in-house components.Once a few projects have been completed, we

will also be able to use our own components.

• Soft-architecture design : “The Software Factory,” we mentioned that the software factory

architecture caused an apparent drop in productivity for the first project developed using it,

by applying morestructured development methods that reduce the amount of time spent on

backtracking and unnecessary rework.This is pretty much unique for any project, and this is

as it should be, for within the soft architecture is the unique spark that makes your game

stand out from the rest. By using the soft-architecture system, we are taking advantage of all

the groundwork that has already been done for us. The soft architecture defines the game-

specific functionality and data required, such as in game graphics, music, and other data. In

fact, the soft architecture is essentially data driven.

 (b) Explain game play research. [10 Marks]

 The gameplay could have an impact on the technology needed for the game. For example,the

game’s user interface may require investigation of certain types of controller. Other aspects of the

gameplay may require active research. For example, in the case of strategy games, plenty of information

is available if you’re prepared to do a little digging: Game theory from the War Studies Group is readily

available on the Web, as are analyses commissioned by the U.S. Navy and the Pentagon. Looking at

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

history also indicates where different factors have contributed to the payoff matrices of a real situation,

such as why the Aztecs became so powerful, and how in spite of this, they were beaten by Cortés.

 For researching the gameplay of a puzzle game like Tetris or Balls!, you could look at

psychological work on types of reasoning. A satisfying puzzle game like Tetris or Puzzle Bobble will

include spatial and temporal reasoning (the “story” part) as well as logical reasoning using the

manipulation of abstract concepts mapped to concrete entities (the “planning” part) and the pleasurable

payoff of watching where all that leads, and learning something more about the way the game rules

operate (the “play” or “learning curve” part.)

 Obviously, you can find more genres of games, but the point we are making here is that you

don’t necessarily have to look in the standard or clichéd places for gameplay ideas, such as novels,

films, and other games. There is a whole world of information out there, and a lot of it can be applied to

gameplay, even if it does not seem immediately obvious. After all, the idea for Tetris was drawn from

the field of mathematics.

 The last kind of research involves researching the technology that is required to actually

implement the game. Are you going to be using any new techniques, or breaking into uncharted waters?

 This sort of research is what id Software spends most of its time doing. id Software has lots of

money. This is no coincidence: without lots of cash backing you up, research has to be more focused

and specific. You can’t just go wandering through your ideas randomly, idly daubing code “pan-it” on

the “canvas” of your compiler without someone being willing to pay the bills.

 The fact is that this sort of research takes a lot of time and a lot of money. This is where the real

research is, and where the bulk of the budget of time and money will be invested. In an ideal world,

your company would have enough money to allow unrestricted research into new technology.

 Unfortunately, unless you are id Software, then this is very unlikely. There will always be

commercial pressures breathing down your necks, and the company management will be expecting

results. In previous chapters, we have pointed out the dangers of depending on concrete results from

research. I’ll not repeat those warnings here.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Research is an unpredictable activity, and research into new technologies is particularly

difficult. For every Quake engine, there are probably hundreds of failed attempts. Worse still, a fair

proportion of these failed attempts will have been for game projects that had to be canned due to that

failure: For the original release of Quake, the focus was on the technology and not so much on the

game.

 In contrast, Quake II was much less of a technological advance over Quake than Quake was over

Doom, A few refinements were made to the engine, but most of the effort appeared to have gone into

refining the gameplay and the storyline. Quake III Arena seems to have reverted to the original Quake

model: concentrating on the gameplay emerging from the technology (which has been improved by the

addition of quadratic curve rendering).

 This is an interesting approach that appears to defy conventional game theory. Even the single-

player game is a multiplayer game, with all the other players controlled by the computer. I’d go as far to

say that there is no real gameplay in a multiplayer game: It’s more a simulation set in a fantasy

environment. It’s too close to reality (albeit a fictional reality) for it to be considered a game. It’s an

accurate simulation of future combat.

 You may be getting the impression that we are against technology in some way. That’s not true.

We are against the gratuitous use of technology in the same way as we are against gratuitous violence.

It’s unnecessary and is, in some cases, quite disturbing.

 The whole industry (with few exceptions) appears to be putting technology before gameplay,

and this is a dismal and worrying prospect. We’ve lost count of the number of games we have seen that

have lost gameplay value because the developers wanted to showcase their latest technologies. Case

Studies 18.3 and 18.4 gives details of a much-welcome exception to this pattern.

 Research should be treated with as much seriousness as you would find in a laboratory.

Everything should be documented. Every thought, every procedure, and every result— even the wrong

ones—needs to be recorded. This is serious stuff. Research is the lifeblood of your company. You need

to research in order to keep up with the fast changing pace of technology. If not, you risk being left

behind in the rush.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

6. (a) What are Scripting languages and why are they preferred for game play? [10 Marks]

 A glue language is a programming language (usually an interpreted scripting language) that is

designed or suited for writing glue code – code to connect software components. They are especially

useful for writing and maintaining:

➢ Custom commands for a command shell

➢ Smaller programs than those that are better implemented in a compiled language

 "Wrapper" programs for executables, like a batch file that moves or manipulates files and does

other things with the operating system before or after running an application like a word processor,

spreadsheet, data base, assembler, compiler, etc.

➢ Scripts that may change

➢ Rapid prototypes of a solution eventually implemented in another, usually compiled, language.

➢ GUI scripting

 With the advent of graphical user interfaces, a specialized kind of scripting language

emerged for controlling a computer. These languages interact with the same graphic windows,

menus, buttons, and so on that a human user would. They do this by simulating the actions of a

user. These languages are typically used to automate user actions. Such languages are also called

"macros" when control is through simulated key presses or mouse clicks, as well as tapping or

pressing on a touch-activated screen.

 These languages could in principle be used to control any GUI application; but, in

practice their use is limited because their use needs support from the application and from the

operating system. There are a few exceptions to this limitation. Some GUI scripting languages

are based on recognizing graphical objects from their display screen pixels. These GUI scripting

languages do not depend on support from the operating system or application.

➢ Application-specific languages

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Interpreter_%28computing%29
https://en.wikipedia.org/wiki/Glue_code
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Macro_%28computer_science%29#Keyboard_and_mouse_macros
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Pixel

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Many large application programs include an idiomatic scripting language tailored to the

needs of the application user. Likewise, many computer game systems use a custom scripting

language to express the programmed actions of non-player characters and the game

environment. Languages of this sort are designed for a single application; and, while they may

superficially resemble a specific general-purpose language (e.g. QuakeC, modeled after C), they

have custom features that distinguish them. Emacs Lisp, while a fully formed and capable dialect

of Lisp, contains many special features that make it most useful for extending the editing

functions of Emacs. An application-specific scripting language can be viewed as a domain-

specific programming language specialized to a single application.

➢ Extension/embeddable language

 A number of languages have been designed for the purpose of replacing application-

specific scripting languages by being embeddable in application programs. The application

programmer (working in C or another systems language) includes "hooks" where the scripting

language can control the application. These languages may be technically equivalent to an

application-specific extension language but when an application embeds a "common" language,

the user gets the advantage of being able to transfer skills from application to application. A

more generic alternative is simply to provide a library (often a C library) that a general-purpose

language can use to control the application, without modifying the language for the specific

domain.

 JavaScript began as and primarily still is a language for scripting inside web browsers;

however, the standardization of the language as ECMAScript has made it popular as a general

purpose embeddable language. In particular, the Mozilla implementation SpiderMonkey is

embedded in several environments such as the Yahoo! Widget Engine. Other applications

embedding ECMAScript implementations include the Adobe products Adobe Flash

(ActionScript) and Adobe Acrobat (for scripting PDF files).

 (b) What are principles to be followed for effective use of factory method? [10 Marks]

https://en.wikipedia.org/wiki/Computer_game
https://en.wikipedia.org/wiki/Non-player_character
https://en.wikipedia.org/wiki/QuakeC
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/SpiderMonkey_%28JavaScript_engine%29
https://en.wikipedia.org/wiki/Yahoo%21_Widget_Engine
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Adobe_Flash
https://en.wikipedia.org/wiki/ActionScript
https://en.wikipedia.org/wiki/Adobe_Acrobat
https://en.wikipedia.org/wiki/PDF

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Factory Design patterns are Creational patterns and deals with how the objects are created.

There are three design patterns, namely, Simple Factory, Factory Method and Abstract Factory design

patterns. All these patterns hide the object creation process from the client and supply the objects

without specifying the exact class of object that will be created. These patterns are widely used across

programming languages especially Java and .Net. In this discussion, we will see the different factory

pattern implementations and validate them against open-closed principle.

➢ The Open-Closed Principle

 Open-Closed principle is one of the fundamental principle of object oriented programming and

is a one of the principle of SOLID. According to Open-Closed Principle the “Software entities (classes,

modules, functions, etc.) should be open for extension, but closed for modification “There are many

different views on Open-Closed Principle and its applicability, scope and practicality. Even some argues

that, it is closely related to Protected Variation pattern of General Responsibility Assignment Software

Patterns (GRASP) (Reference: Applying UML and Patterns Craig Larman). It says, protect elements

from the variations of other elements by wrapping the focus of instability with an interface and using

polymorphism to create various implementation of this interface.

➢ Factory Design Patterns and Open-Closed Principles

 The question is, when you design your program or module using Factory design patterns, are

you violating the Open-Closed principle?Let us check this by using sample programs of all the three

Factory patterns.As we mentioned above, Factory patterns are used to implement the concept of

factories and deals with the problem of creating objects (exact class of object that will be created will

not be specified) also called products. Factory pattern comes in different variants and implementations

such as GoF’s Factory Method and Abstract Factory. First let us see the simple Factory pattern example.

We will see the Factory Method and Abstract Factory patterns after this.

➢ Simple Factory Pattern

 The simple Factory (method) pattern is really simple. The client requires a Product object and

instead of creating the product using the new operator, it asks the Factory for a new object. The client

also provides the information on which type of Product it is looking for. As with all factory pattern

clients, the client here use the product object as abstract product without being aware of the concrete

product implementation.

http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29
http://authors.phptr.com/larman/uml_ooad/index.html

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Factory Method Pattern – GoF Factory pattern

 The classic definition of Factory Method (also known as Virtual Constructor) pattern is “Define

an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method

lets a class defer instantiation to subclasses.”This is one of the widely used patterns in Java and .NET.

One example in Java is java.net.ContentHandlerFactory interface. This interface defines a factory for

content handlers. URLConnection.getContent() method uses this factory to get the appropriate content

object.

 This pattern is used, when the class wants its subclasses to specify the object it creates and when

the class cannot anticipate the object class it needs to create. That means, the client doesn’t know the

type of the objects that needs to be created, still want to perform operations on them. Here the creator or

factory relies on its subclass’s factory method to return instance of an appropriate concrete product

object. The creator can execute some operations or sequence of operations on the object.This pattern

decouples product sub class details from the client and new products can be added without affecting the

existing code.

7. Solve (any four) :- [20 Marks]

 (a) Difference between game and Business application.

If we want to start putting in some gameplay, the question “What is a game?” can serve as a good

starting point.

➢ Cool Features

 Cool features are just fine; in fact, they are a necessity. However, cool features do not, of

themselves, make the game. You know those brainstorming sessions with your developers that end with

everybody saying, “Wouldn’t it be great if you could give a whole bunch of swordsmen an order and

every swordsman would do something a tiny bit different?”

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Even if all those great little ideas didn’t take forever to implement, there’s a point at which

cramming in extra features just starts to damage the elegance of the gameplay. This tendency to add

unnecessary features, commonly known as gold plating, is always the result of somebody, at some

point, deciding those features would be cool. They may well be cool, and having them might help the

game—just know when to draw the line.

➢ Fancy Graphics

 Games need fancy graphics, just as a blockbuster movie needs special effects—but neither will

save the product if the core creativity and quality is lacking. The fact is that in today’s market, not

having fancy graphics in your game is commercial suicide effectively because games are a chart-driven

industry. All such industries are strongly affected by the reviewers—who tend, of course, to be hardcore

aficionados with top-oft he- range machines and who therefore expect to see impressive technology on

show.

 The danger with fancy graphics (as with cool features) is that they can distract the development

team’s attention from putting any depth into the game. The movie industry is littered with examples of

movies that cost $100 million and up but failed to spend anything of that on getting a good script.

Cinemagoers can see through that, and there is growing evidence that gamers are starting to also. We

would certainly never turn down any fancy graphics that the technology can provide, but the game has

to be able to work without them.

➢ Puzzles

 All games have puzzles. From determining where to build your castle extension to figuring out

how to kill a wave of tricky aliens, games can universally be described as containing sets of linked

puzzles.

 You may or may not like puzzles. Heuristic puzzles can be diverting, but often that’s just the

problem: They divert attention from an interesting story or game. On the other hand, some

people like them—although a “pure” puzzle game does not exist in the wild, as they are usually merged

with another genre to boost the interest level. (A good example of this would be Tetris.) Either way,

puzzles are not gameplay in themselves. Puzzles are specific problems. Game design is about creating a

system that will spawn generic problems.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Setting and Story

 Again, who could bring themselves to drown this kitten? A good setting encourages

immersion—what Coleridge called “the willing suspension of disbelief.” And a good story draws the

player in and impels him through the action. But, again, it will add up to nothing if the gameplay isn’t

there.

 The most valuable skill a software analyst develops is to know when to stop. Knowing when a

design is “a done deal” is what separates the real analysts from the wannabe newcomer. In your average

business application, this mapping may not be so immediately obvious.

After all, trying to visualize a space containing tax returns, billing receipts, and bank accounts with

transactions zipping through the ether does not come as easily the average human being as imagining a

space full of spacecraft with lasers flashing between them. Of course, the token-to-object mapping may

not always be so trivial; it can be deceptive.

 Games are generally more intuitive and comprehensible than business applications. It’s one of

the things that makes them fun. The average player has to be able to relate to the world within the game;

otherwise it is not fun. If the world within the game is easy for a wide range of people to relate to, then

it is most probably expressed in terms of understandable concepts and entities.

 The tokens in the game can be easily mapped to real (or imaginary) life equivalents, and the

interactions between these tokens can be implicitly understood and predicted. Of course, this does not

apply to all games or business applications. We know of enough games that are not fun—and enough

business applications that are—to support this last point.

 Business applications and games have two different agendas. A business application has no real

goal: It is merely a tool to use to complete a task. You don’t get three attempts at creating your

spreadsheet before you have to go back to the beginning and start again (although with the early buggy

releases of a certain famous spreadsheet application, it certainly seemed that way). A good game is

meant to provide a challenge. A good business application is not.

 (b) Software factory

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 The term software factory refers to a methodology of producing software with techniques similar

to those used in a standard factory, such as one that manufactures cars. This doesn’t mean, however, that

all the software produced by this method will be identical, churned out endlessly, and devoid of

imagination and flair. Enough companies are already too good at producing creatively bankrupt

software.

 As the computer games industry begins to mature, more sophisticated production methods, such

as the software factory, are being implemented to develop new products. The software factory

methodology centralizes and simplifies the production of specific common modules that can be used

across several products.

 It uses the advantages of mass production to make specific tasks both easier and more efficient,

and it has the benefit of ensuring that a core set of tools and libraries are well maintained and supported

over a series of products. Thus, subsequent products become easier to develop, as they will be supported

by a more resourceful library and useful tool set.

 The software factory has been proven to work time and time again on projects with common

functionality . Keep in mind that this method may not be best suited to a particular product. (You or

your co-workers may have a better methodology scrawled on the back of an envelope!) However,

software factories are particularly well-suited for producing a series of products.

 “But these are games we’re writing! Each one is unique! There is no way we can rehash the

code, change the graphics, and re-release the game!” This objection is perfectly valid, but how many

times do you want to write screen and sound setup code, data file loaders, compression libraries, CD

track playing code, finite-state machine code, menu code, or any other chunk of potentially reusable

code from a long list of basic modules? Looking at it from a management perspective, how much time

and money do you want to spend for specialists to write code that you already have? Not only does the

code have to be written, it also has to be tested, integrated, and debugged.Some common tasks that

should be placed in reusable modules are as follows:

➢ Data file loading

➢ Hardware setup

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Hardware configuration

➢ Software configuration

➢ Custom CODECs (compression and decompression)

➢ Encryption/decryption code

➢ Windowing and graphics features

➢ Basic AI components

➢ User input

 The software factory concept eases tasks such as producing common libraries and tool sets,

leaving the developers to concentrate on the code bits that should be written from scratch. The fastest

work is the work that has already been completed and tested for full functionality.

 (c) Code priority

 At each level of project development, certain priorities drive the process. These priorities will

almost certainly differ for certain areas of the project. For example, the priorities for the code to provide

a menuing system is likely to have wildly different priorities than the code for a 3D engine would have.

(If they don’t, then there is something seriously wrong with the project.)

 You need a project edict to establish coding priorities as part of the technical design, and the

coder needs to follow these priorities. Otherwise, time is wasted reimplementing code that is not

suitable for the purpose.

 These priorities cannot be ignored, as they are the low-level forces that govern the direction of

the project. At the highest level, project goals drive the project, but at the lowest levels—where all the

action is—coding priorities drive code implementation. What do we need to know about priorities?

What sort of considerations need to be taken into account?

➢ Speed

➢ Size

➢ Flexibility

➢ Portability

➢ Maintainability

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Speed

 The need for speed is foremost in the minds of the majority of game developers. Games have to

be fast. Each function needs to be pared down to the absolute minimum. Each needs to be optimized to

the max. Well, that’s what a lot of developers believe. And, if they are working on restricted platforms

such as the GBA, with its relatively low-powered processor, then they will be right. Of course, some

code (such as menuing code) wouldn’t set such a high priority on speed. As an example, on the GBA,

the next highest priority would be system architecture considerations and size.

 On more-powerful platforms, including the PC and Consoles, the quest for speed is a bit of a

wild goose chase. It simply isn’t possible to optimize down to the instruction

level in a reasonable period. The processors that these machines use (and the software they run) tend to

be so complex that the execution speed of any particular block of code is pretty nondeterministic at the

lowest levels of granularity. The only way to measure speed with any accuracy is to use stochastic

method; that is, run the code to be tested several thousand times and take the average execution time.

 You could do this sort of thing manually, but this doesn’t provide you with much application-

level information. The best solution is to use a profiling package such as Compuware’s TrueTime or

Intel’s VTune on PC, which instrument the application and collect information as it is running. The

resulting database can be reviewed in a hierarchical form, and you can see which functions are taking up

the most time, as a percentage of either program execution time or the execution time for the calling

routine.

 The main use of this sort of program is not just to tell you how effective your optimizations are,

but also to tell you where to optimize. It’s a standard statistic that your program spends 90% of the time

in just 10% of the code. It’s just not worth focusing your attentions on areas of code that simply aren’t

executed that often. You’ll get much better results by focusing on the 10% of commonly executed

code than you will by working on the rest. Sure, you might have the fastest appearing menu in the west,

but who’s going to notice if the main game loop runs like a lethargic slug?

 In regards to optimization, it should begin at the algorithm level and end at the op-code level

only as a last resort. You’ll get much better optimization results if you take a long, hard look at the

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

algorithms you’re using than you will by concentrating on the op-code level, which is the highest

granularity level in the system. Only when all the lower granularity level options have been exhausted

should you shift up a granularity level.

➢ Size

 Size is less of a priority on the more powerful platforms. This is because the amount of

system resources available to the programmer are usually exhausted by other means long before code

size becomes an issue. On a typical CD-ROM game for the PC, the program files themselves take up

less than two or three megabytes of space. The data for the game—comprising the artwork, the music,

and the game data—take up the major part of the space on the CD-ROM.

 On the PC or Macintosh, unless you are coding for a specific purpose (such as components that

are to be download over the Internet uncompressed), then code size is never a consideration, because the

available level of local read/write storage is usually much more than a typical game requires. The only

size limitation on the PC (and these are rapidly disappearing) is the amount of memory on the graphics

cards, but, again, this is a matter of data rather than of code.

 The bottleneck here is how much data can be shifted across the card bus and how much of that

data will fit in the card’s memory. processor cache considerations are for the most part redundant. It’s

no longer important to try and tune assembly loops so that they fit comfortably inside the processor’s

first-level cache. The last famous program that took these things into consideration was the original

Quake, but this was written before the advent of the powerful 3D graphics acceleration cards.

 However, on space-limited platforms that do not have large amounts of fast, on-board storage

(such as the PlayStation 2 or the Gamecube), then code size becomes a much more important

consideration.

➢ Flexibility

 Code flexibility depends on where and how it is intended to be used. For example, linked lists

are generally useful in many situations, so, if you wanted to implement a linked list, it would make

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

sense to use templates that allow it to be customized for use in other modules by instantiating a type-

specific version of the code where required.

 Where reuse is a consideration, flexibility of code is also important. The rule to follow when

considering flexibility is that the lower the level—and the more generic the functionality—the more

important it is to make flexibility a priority.

➢ Portability

 For portability to be a consideration, the platforms being targeted must be broadly similar in

capabilities. For example, it would not make sense to attempt to write C code that would be portable

from the PC down to the GBA because of the huge difference in power between the two platforms. The

concept of portability here is meaningless.

 However, between platforms of arguably similar capabilities—such as the PlayStation 2, PC,

and GameCube (and to some extent the PC)—the potential for cross-platform libraries is much greater.

The similar power and capabilities of these platforms lend themselves to some degree of abstraction,

meaning that common game code could be written in a portable style using a consistent interface to

platform-specific code on each machine. The downside of this is that consumers can reject obvious

“console ports.”

➢ Maintainability

 Maintainability—the readability and ease of modification—of code is usually one of the most

important concerns, especially when the code is designed to be modified by more than one person. The

software factory methodology places maintainability very high on the list of important priorities.

 Maintainability is usually enforceable everywhere, but sometimes, when code is optimized for

speed or size—or even to work around a bug—the maintainability can suffer slightly In general, it is

best to mandate that code should be as maintainable as possible, except in cases in which the

maintainability affects another higher priority. In this case augmenting

the documentation should make up this deficit.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 (d) Graphic file formats

 The primary web file formats are gif (pronounced “jiff”), jpeg (“jay-peg”), and, to a much lesser

extent, png (“ping”) files. All three common web graphic formats are so-called bitmap graphics, made

up of a checkerboard grid of thousands of tiny colored square picture elements, or pixels. Bitmap files

are the familiar types of files produced by cell phone and digital cameras, and are easily created, edited,

resized, and optimized for web use with such widely available tools as Adobe’s Photoshop or Elements,

Corel’s Paint Shop Pro and Painter, and other photo editing programs.

 For efficient delivery over the Internet, virtually all web graphics are compressed to keep file

sizes as small as possible. Most web sites use both gif and jpeg images. Choosing between these file

types is largely a matter of assessing:

• The nature of the image (is the image a “photographic” collection of smooth tonal transitions or

a diagrammatic image with hard edges and lines?)

• The effect of various kinds of file compression on image quality

• The efficiency of a compression technique in producing the smallest file size that looks good

➢ GIF Graphics

 The CompuServe Information Service popularized the Graphic Interchange Format (gif) in the

1980s as an efficient means to transmit images across data networks. In the early 1990s the original

designers of the World Wide Web adopted gif for its efficiency and widespread familiarity. Many

images on the web are in gif format, and virtually all web browsers that support graphics can display gif

files. gif files incorporate a “lossless” compression scheme to keep file sizes at a minimum without

compromising quality. However, gif files are 8-bit graphics and thus can only accommodate 256 colors.

➢ PNG graphics

 Portable Network Graphic (png) is an image format developed by a consortium of graphic

software developers as a nonproprietary alternative to the gif image format. As mentioned above,

CompuServe developed the gif format, and gif uses the proprietary lzw compression scheme, which was

patented by Unisys Corporation, meaning that any graphics tool developer making software that saved

http://en.wikipedia.org/wiki/Gif
http://en.wikipedia.org/wiki/Jpeg
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Photoshop
http://en.wikipedia.org/wiki/Adobe_Photoshop_Elements
http://en.wikipedia.org/wiki/Paint_Shop_Pro
http://en.wikipedia.org/wiki/Corel_Painter
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Compuserve

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

in gif format had to pay a royalty to Unisys and CompuServe. The patent has since expired, and

software developers can use the gif format freely.

 Png graphics were designed specifically for use on web pages, and they offer a range of

attractive features, including a full range of color depths, support for sophisticated image transparency,

better interlacing, and automatic corrections for display monitor gamma. Png images can also hold a

short text description of the image’s content, which allows internet search engines to search for images

based on these embedded text descriptions.

 Png supports full-color images and can be used for photographic images. However, because it

uses lossless compression, the resulting file is much larger than with lossy jpeg compression. Like gif,

png does best with line art, text, and logos—images that contain large areas of homogenous color with

sharp transitions between colors. Images of this type saved in the png format look good and have a

similar or even smaller file size than when saved as gifs. However, widespread adoption of the png

format has been slow. This is due in part to inconsistent support in web browsers. In particular, internet

explorer does not fully support all the features of png graphics. As a result, most images that would be

suitable for png compression use the gif format instead, which has the benefit of full and consistent

browser support.

➢ Jpeg graphics

 The other graphic file format commonly used on the web to minimize graphics file sizes is the

joint photographic experts group (jpeg) compression scheme. Unlike gif graphics, jpeg images are full-

color images that dedicate at least 24 bits of memory to each pixel, resulting in images that can

incorporate 16.8 million colors.

 Jpeg images are used extensively among photographers, artists, graphic designers, medical

imaging specialists, art historians, and other groups for whom image quality and color fidelity is

important. A form of jpeg file called “progressive jpeg” gives jpeg graphics the same gradually built

display seen in interlaced gifs. Like interlaced gifs, progressive jpeg images often take longer to load

onto the page than standard jpegs, but they do offer the user a quicker preview.

 Jpeg compression uses a sophisticated mathematical technique called a discrete cosine

transformation to produce a sliding scale of graphics compression. You can choose the degree of

compression you wish to apply to an image in jpeg format, but in doing so you also determine the

http://en.wikipedia.org/wiki/Jpeg

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

image’s quality. The more you squeeze a picture with jpeg compression, the more you degrade its

quality. Jpeg can achieve incredible compression ratios, squeezing graphics down to as much as one

hundred times smaller than the original file. This is possible because the jpeg algorithm discards

“unnecessary” data as it compresses the image, and it is thus called a “lossy” compression technique

 (e) Game display technologies

http://en.wikipedia.org/wiki/Lossy_compression

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

GAMING ARCHITECTURE AND PROGRAMMING (GAP)
DECEMBER 2012 INFORMATION TECHNOLOGY

SEMESTER 8

Con.9134-12. (REVISED COURSE) KR-4713

 (3 Hours) [Total Marks: 100]

N.B. : (1) Question No.1 is compulsory.

 (2) Attempt any four questions from Q. Nos.2 to 7.

 (3) Assume suitable data if necessary.

1. (a) Explain game development process. [10 Marks]

➢ Step One: Initial Planning

 The Genesis Gaming Design and Marketing teams will meet with the client to determine the key

concepts driving the development of a strategic game portfolio. This will address issues such as analysis

of an existing portfolio, current demographics, additional player acquisition and retention, emerging

trends and profiles. We will further discuss a range of themes, volatility levels, features, bonus games

and any other aspect required for bespoke development of a strategic portfolio. It is also important that

there is an overall marketing discussion to determine how the games can be used to further extend the

client’s brand.

➢ Step Two: Technical Review

 Our Engineering Team will review documentation provided by the client to determine if there

are any technical questions or matters that need to be addressed to best develop to a specific

platform.This will ultimately save significant time in the integration process.

➢ Step Three: Initial Themes & Concept Art

 We will submit themes, names, concept art and descriptions for consideration and approval or

modification. We will then work with the client to determine portfolio development priorities.

This allows the ability to set expectations as to game delivery. The client can then implement a schedule

for marketing and release.

http://gen-game.com/company/game-development-process/#toggleOne5
http://gen-game.com/company/game-development-process/#toggleOne18
http://gen-game.com/company/game-development-process/#toggleOne14

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Step Four: Features and Mathematics

 Our Game Design and Mathematics departments will determine and create unique math models

that best represent the client’s objectives as stated through the analytical process and the client’s

objectives. Math will be verified and all required percentages will be provided.

➢ Step Five: Art and Creative Design

 The Genesis Gaming Art Department will design and submit static art and design elements for

approval. Subsequently, our Animation and Music Composition teams will finalize the game. This will

require the client to provide appropriate documentation such as templates and other substantive game

specifications for consistency.

Upon completion, our Demo team will provide a playable version of the game for additional review.

➢ Step Six: Integration

 Upon approval, our Engineering Department will integrate the game to the appropriate provider

platform. This requires the necessary documentation, such as an API, from the client along with server

support, assuming it is not an “asset only” delivery. We place a significant emphasis on product

assurance and quality control so the game will be very “client provider friendly.”

➢ Step Seven: Delivery

 All game assets, in the requested file formats, including all release documentation will be

provided according to contractually specified delivery requirements. Genesis Gaming is also happy to

provide any material that may be requested for the client’s marketing campaign.Since success is our

mutual objective, it is our goal to make certain that the client has all tools possible to promote the best

exclusive content in the industry

(b) Explain Hard and Soft architecture. [10 Marks]

Architecture Design

 When we begin to consider the actual architecture of the game (refer figure 2.1), we need also to

consider how to construct it around the planning needs of the schedule. “Milestones and Deadlines”.

Each milestone will specify the technical requirements to complete a particular tier. As we have been

http://gen-game.com/company/game-development-process/#toggleOne94
http://gen-game.com/company/game-development-process/#toggleOne35
http://gen-game.com/company/game-development-process/#toggleOne60
http://gen-game.com/company/game-development-process/#toggleOne63

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

discussing, the architecture is specified in three main stages, each of which expands into a number of

tiers.

The three stages are:

➢ Prototyping :

 The prototyping stage allows us to have a dress rehearsal of the full architecture, allowing us to

tackle any tricky points and difficulties that we might encounter. Of course, this doesn’t mean that we

are going to be able to cover all of these difficulties, but we can tackle at least the more obvious ones,

and, of course, we will be able to explore gameplay issues sooner than we would be able to otherwise.

➢ Hard-architecture design :

 The hard-architecture design stage involves the laying of the game framework. However, the

point of using a component- based design is to produce a set of generic components that can be used

across projects. Hard-architecture components would need to be upgraded and augmented in order to

keep up with emerging technology, but, with a sensible set of interfaces, the disruption caused by this

continual upgrade (not replacement) process would be minimal. Only after a few projects have been

undertaken will we see any benefits from reusing in-house components.

Once a few projects have been completed, we will also be able to use our own components.

➢ Soft-architecture design :

 “The Software Factory,” we mentioned that the software factory architecture caused an apparent

drop in productivity for the first project developed using it, by applying more structured development

methods that reduce the amount of time spent on backtracking and unnecessary rework. This is pretty

much unique for any project, and this is as it should be, for within the soft architecture is the unique

spark that makes your game stand out from the rest. By using the soft-architecture system, we are taking

advantage of all the groundwork that has already been done for us. The soft architecture defines the

game-specific functionality and data required, such as in game graphics, music, and other data. In fact,

the soft architecture is essentially data driven.

2. (a) What are tokens? Explain tokenization with an example. [10 Marks]

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 In general, a token is an object that represents something else, such as another object (either

physical or virtual), or an abstract concept as, for example, a gift is sometimes referred to as a token of

the. We can also consider these tokens to be arranged in a form of hierarchical structure.

The playing area, or game world, in itself is at the top of the hierarchy. From then on in, it is an

essentially flat hierarchy.

Figure :The Pong token hierarchy.

 The game world token contains all the other tokens. Obviously every token has to operate within

the game world in order to form a part of the game. The player avatar token is the representation of the

player within the game world. It is effectively a channel for the user interface between the player and

the game.

 The player avatar for Pong is very simple; it is merely a bat and a score. These are how the

player is represented in Pong. The other tokens—those manipulated by the computer—are the ball, the

walls, and the goal zones.

 Now it’s time for a little sleight of hand of the sort that is possible with only the written word.

Reread the two paragraphs, and for every instance of the word “token,” read it as “object.”

 So, if we were just talking about objects all along, why didn’t we just use the word “object” to

start with?

 The main reason—and why we particularly like the use of the word token and why we will

continue using it from here on in—is that these conceptual tokens may not have a one-to-one mapping

with the programming language objects (for example, in C++) that are defined by the programmers.

What we are trying to do is to break down the game design into conceptual objects that will eventually

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

be translated into programming language objects. This tokenization process is an intermediary stage in

the production of a decent architecture. In order to describe this without causing confusion, we need to

use different terminology for each type of object.

 The tokenization of a game design such as Pong is fairly trivial, and there’s really only one way

to do it. In spite of this, it makes an excellent example to try to demonstrate the thought processes

behind tokenization. Not all games will be so trivial, and, for some more complex games, there may be

many ways, all of which are equally valid. So now we have a set of tokens. On their own, they are not

very exciting as they do not interact with one another. But as we know, in Pong there are all sorts of

interactions going on. Well, one anyway: collisions.

 We can now define an event—the collision event. Let’s say that a collision event is generated

when two tokens collide. The net result of this event is that each token receives a message telling it that

a collision has occurred, and the type of object it has collided with.

 The token interaction matrix is a very important construct. It is a chart of all the interactions that

take place in the game. Note that for very large games we would not use a token-token matrix directly.

Instead we would introduce an extra layer of abstraction by using token-property and/or property-

property.

 Okay, so let’s look at the Pong token interaction matrix. The matrix is arranged in a triangular

format, with each token listed along the side and the bottom. An unusual feature of Pong is that tokens

do not come into contact with other tokens of the same type. This immediately means that the token-

token interactions for bat-bat, ball-ball, wall-wall, goal-goal, and score-score can be discounted. Due to

the nature of the game, the following interactions can also be discounted: bat-goal, wall-goal, score-bat,

score-ball, and score-wall.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : The Pong token interaction matrix.

(b) Explain source control system. [10 Marks]

 A component of software configuration management, version control, also known as revision

control or source control,[1]:2 is the management of changes to documents, computer programs, large

web sites, and other collections of information. Changes are usually identified by a number or letter

code, termed the "revision number," "revision level," or simply "revision." For example, an initial set of

files is "revision 1." When the first change is made, the resulting set is "revision 2," and so on. Each

revision is associated with a timestamp and the person making the change. Revisions can be compared,

restored, and with some types of files, merged.

 The need for a logical way to organize and control revisions has existed for almost as long as

writing has existed, but revision control became much more important, and complicated, when the era of

computing began. The numbering of book editions and of specification revisions are examples that date

back to the print-only era. Today, the most capable (as well as complex) revision control systems are

those used in software development, where a team of people may change the same files.

https://en.wikipedia.org/wiki/Software_configuration_management
https://en.wikipedia.org/wiki/Version_control#cite_note-Mercurial-1
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Writing
https://en.wikipedia.org/wiki/Edition_%28book%29
https://en.wikipedia.org/wiki/Specification_%28technical_standard%29
https://en.wikipedia.org/wiki/Software_development

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Version control systems (VCS) most commonly run as stand-alone applications, but revision

control is also embedded in various types of software such as word processors and spreadsheets, e.g.,

Google Docs and Sheets[2] and in various content management systems, e.g., Wikipedia's Page history.

Revision control allows for the ability to revert a document to a previous revision, which is critical for

allowing editors to track each other's edits, correct mistakes, and defend against vandalism and

spamming.

 Software tools for revision control are essential for the organization of multi-developer projects.

 In computer software engineering, revision control is any kind of practice that tracks and

provides control over changes to source code. Software developers sometimes use revision control

software to maintain documentation and configuration files as well as source code.

 As teams design, develop and deploy software, it is common for multiple versions of the same

software to be deployed in different sites and for the software's developers to be working simultaneously

on updates. Bugs or features of the software are often only present in certain versions (because of the

fixing of some problems and the introduction of others as the program develops).

 Therefore, for the purposes of locating and fixing bugs, it is vitally important to be able to

retrieve and run different versions of the software to determine in which version(s) the problem occurs.

It may also be necessary to develop two versions of the software concurrently (for instance, where one

version has bugs fixed, but no new features (branch), while the other version is where new features are

worked on (trunk).

 At the simplest level, developers could simply retain multiple copies of the different versions of

the program, and label them appropriately. This simple approach has been used on many large software

projects. While this method can work, it is inefficient as many near-identical copies of the program have

to be maintained. This requires a lot of self-discipline on the part of developers, and often leads to

mistakes. Consequently, systems to automate some or all of the revision control process have been

developed.

 Moreover, in software development, legal and business practice and other environments, it has

become increasingly common for a single document or snippet of code to be edited by a team, the

members of which may be geographically dispersed and may pursue different and even contrary

interests. Sophisticated revision control that tracks and accounts for ownership of changes to documents

and code may be extremely helpful or even indispensable in such situations.

https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Version_control#cite_note-2
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Help:Page_history
https://en.wikipedia.org/wiki/Spamming
https://en.wikipedia.org/wiki/List_of_revision_control_software
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Computer_bug
https://en.wikipedia.org/wiki/Branching_%28revision_control%29
https://en.wikipedia.org/wiki/Trunk_%28software%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Structure revision control manages changes to a set of data over time. These changes can be structured

in various ways.

 Often the data is thought of as a collection of many individual items, such as files or documents,

and changes to individual files are tracked. This accords with intuitions about separate files, but causes

problems when identity changes, such as during renaming, splitting, or merging of files. Accordingly,

some systems, such as git, instead consider changes to the data as a whole, which is less intuitive for

simple changes, but simplifies more complex changes.

 When data that is under revision control is modified, after being retrieved by checking out, this is

not in general immediately reflected in the revision control system (in the repository), but must instead

be checked in or committed. A copy outside revision control is known as a "working copy". As a simple

example, when editing a computer file, the data stored in memory by the editing program is the working

copy, which is committed by saving.

 Concretely, one may print out a document, edit it by hand, and only later manually input the

changes into a computer and save it. For source code control, the working copy is instead a copy of all

files in a particular revision, generally stored locally on the developer's computer in this case saving the

file only changes the working copy, and checking into the repository is a separate step.

 If multiple people are working on a single data set or document, they are implicitly creating

branches of the data (in their working copies), and thus issues of merging arise, as discussed below. For

simple collaborative document editing, this can be prevented by using file locking or simply avoiding

working on the same document that someone else is working on.

 Revision control systems are often centralized, with a single authoritative data store, the

repository, and check-outs and check-ins done with reference to this central repository. Alternatively, in

distributed revision control, no single repository is authoritative, and data can be checked out and

checked into any repository. When checking into a different repository, this is interpreted as a merge or

patch.

3. (a) State design patterns that are commonly used in game design.[10 Marks]

 Design patterns are generalized solutions to generalized problems that occur with some

modicum of frequency when you're creating software using the object oriented programming paradigm.

Why Use Design Patterns? The most basic and condescending answer is: because these solutions have

https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Distributed_revision_control

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

existed for a relatively long time and many experts have used them, they're likely better than any

solution you could come up with on your own.

 And even if you did come up with a solution on your own, it's likely already a design pattern in

some way

 .Knowledge of contextually pertinent design patterns helps you to make good architecture and

design decisions.

Common Game Programming Patterns

➢ Singleton - You create objects that ensure that only a single instance of which can exist at a time.

In my game Total Toads, this is the design pattern used because it was easiest to fit with

cocos2d's design. For example, in cocos2d, there's a Singleton CCDirector,

CCSpriteFrameCache, etc. It seems this is an often-used panacea in game programming.

 Though the general consensus seems to be that it isn't a panacea so much as it is a cancer

because it actually masks poorly designed architecture. You should probably avoid using this

design pattern if you can because there's likely a better way to design the architecture of your

game. This can avoid the problem of having multiple instances of objects of which there should

only be one, like a "Player" object in a single player game.

➢ Factory - You create an object whose purpose it is to create other objects. For example, you can

have a factory class called "GameObjectFactory" with static (possibly parameterized) methods to

create other game objects like a "Player", "Enemy", "Gun", or "Bullet". The latter classes might

have complex constructions that make obtaining a instance of that specific class difficult.

 The factory can take care of the object's complex configuration (adding to an object pool,

adding to physics engine, etc) and simply return a reference to the created object. This pattern

helps you avoid the problem of complex object instantiation by keeping these complex

configurations in a single place, rather than scattered around in your code.

➢ Observer - The object in question maintains a list of other objects that are interested in its state

and notifies these listening objects of a change in its state. In Total Toads, we have 3 Frog

http://en.wikipedia.org/wiki/Singleton_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Observer_pattern

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

objects and 3 FrogAnimation objects that can control the animation of the frogs based on their

state. In this case, the FrogAnimation objects are observers of the Frog objects.

 Every time the state variable for a Frog changes, it notifies the associated FrogAnimation

object to notice the new state and take an action if necessary (like animating the frog). This

pattern helps you avoid the problem of event notification in your game. Since games are user-

interaction driven, objects can change state at almost any time. When an object changes state

oftentimes that object needs to be animated or have other objects change their state with respect

to the new state.

➢ State - You have an abstract (empty implementation) class that has subclasses to define the

current state. An example of this might be a first person shooter that has a "Player" class who

has several possible states like "PlayerInCombat", "PlayerOutOfCombat", and "PlayerInMenu".

 When the state is changed, the player shall be represented as an instance of the

appropriate state class. When the player starts to be shot at, the player object "switches" to an

instance of the PlayerInCombat class to take advantage of that class's implementation of the

mouse's left button click which makes the player able to shoot their gun. Similarly for the

"PlayerOutOfCombat" and "PlayerInMenu" classes, where the mouse might allow usage of

items or the clicking of menu options, respectively.

 This pattern helps you avoid monolithic methods that perform differently based on the

object's state by having a bunch of switch or if/elses in your code. Instead, the object just

changes and runs its appropriate code. This also simplifies your code and allows you to more

easily find problems in your objects behavior since the state is right in the object's class name.

 (b) What are the research goals and explain blue sky research. [10 Marks]

 We would all love to spend all day in front of a computer munching pizza and guzzling coffee,

freely engaging our creativity and researching whatever we like. Some companies do allow this and

have active (if somewhat variable) research departments. That’s a good thing. Research is essential to

the survival of a company. It’s blue-sky research that you have to be careful about. By definition, any

http://en.wikipedia.org/wiki/State_pattern

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

technology present in games currently available in the shops is about 18 months behind what is

currently being worked on by the best design houses.

 In other words, even with the best will in the world, it is statistically unlikely that anything

remotely useful will be achieved, except a rather tragic comedy of errors. When a game project depends

on the outcome of research that has not been completed, that project is in great danger. Putting anything

in the critical path for which the outcome cannot be predicted is sheer idiocy; but for some reason—

whether greed, stupidity, or just plain ignorance—development teams seem to do this on a regular basis.

 We’re not advocating that research should be abolished; that would be a draconian measure and

would lead to further stagnation of the industry. What we are saying is that there is a time for research

and a time for development, and that the two should never overlap. Any research that is instigated

should be directed research. It should have an aim.

 An example would be the design and development of a library useful in fuzzy-logic

calculations. For sure, there would be a fair amount of research involved, but this would be research into

ways of optimizing and improving on known techniques. The blue-sky alternative would be to look for

a completely new method of doing things. Fortunately, there is very little you can imagine doing with a

computer that hasn’t been already done by someone somewhere.

 If you’re very lucky, then they have published their results. Building on the work of others,

although less glamorous, is a surer way of getting good results. Besides, if you wanted glamour then

why did you become a developer? When your team is researching, set a strict time limit and stick to it

ruthlessly. Run with what you physically have at the end of the research period, not with what you are

promised at the beginning.

 The time allocated for research should also factor in the time necessary to bring the research

project to a successful conclusion and with a stable and well-documented component. As the research

progresses, more and more unknowns will become quantifiable. As soon as the fundamental technique

being researched is working, a mini-schedule can be drawn up to allow for this tidying-up procedure. If

the game design depends on this research, then this is the single most critical point of the whole

development.

 The project will succeed or fail—right here, right now—dependent on the success of this

research project. Obviously, this is not a good idea: Gambling the whole project on blue-sky research is

a game that only the very foolhardy or the extremely desperate would play. Remember, any safety net is

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

better than no safety net. If no safety net is possible, then “make-or-break” research should be avoided.

It’s too much of a risk, no matter how cool the developer doing the research is.

 Under most circumstances, releasing the product is better than canning it. Only the most cash-

rich companies will be able to afford internal research such as that used during the development

processes of Die by the Sword and Outcast. Not so many companies are able to afford the protracted

development times and the risks that are associated with research of this nature. If your company

doesn’t have the sort of cash available to finance a research department, you still have a few options

open.

 The first, and most undesirable, is to avoid projects that require R&D. This is only really

acceptable for the “ticking-over-and-we-know-we’ll-only-sell-a-couple-of hundred- thousand-or-so”

type of company. This is a viable option, but it isn’t going to go anywhere fast.

 For the less-affluent companies, another option is to form links with academia. Forming a loose

relationship with universities and their computing departments can provide some good technology at

some very good prices. A company that we have worked for in Belgium used their local university as a

source of cutting-edge cryptography algorithms and regularly tested their latest algorithm designs by

letting the university researchers loose on them. The theory was that any implementations of algorithms

that these university cryptography experts couldn’t crack were pretty much guaranteed to be secure.

 If you use the “external research” system, then this also simplifies some other company

decisions. Form a liaison with academia: A good relationship means that they get to publish and you get

to use their new ideas. Yet another option is to be part of a large conglomerate, either using the

Hollywood studio model or the loose alliance model typified by Lionhead’s satellite. The latter may not

be an optimal system.

 To optimize it you need to ensure that the separate development teams are aware of and able to

share each other’s technology. Also you would ideally organize collateral R&D so that two companies

don’t waste time on the same tasks, all of which is best achieved by appointing a resource investigation

unit to interface between all the projects in development. A loose development alliance can work,

therefore, but it needs structure.

4. (a) Explain various platforms on which game can be deployed on. What are the advantage and

disadvantages of each of these platform? [10 Marks]

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Finding the right game engine can be the key to successfully building and deploying a game that

becomes both popular and lucrative. But there are so many game engines out there vying for your

attention. Clearly, some guidelines on the subject would be useful.

 Ten years ago, it was okay to release your game on one platform at a time. Today, it’s more

typical for a game to be released rapidly on multiple platforms. To that end, a cross-platform game

engine offers some real advantages, and the options there are quite diverse and plentiful. Having

recently released my own game template based on Cocos2D JS, I thought it would be interesting to

compare some of the major game engines and see how they stack up against each other.

 To prepare for this post, I wrote a complete Breakout clone in four of today’s top cross-platform

game engines: Unity, Corona, Cocos2D JS and Appcelerator Titanium, and also using my game

template, RapidGame Pro. The code can be found at the end of each section, so you can see for yourself.

My observations on how they all compare should help you make a choice that may save you and your

team weeks or months.

➢ Unity : Unity is, in short, a closed-source, cross-platform game development application. You

create your game by manipulating objects in 3D and attaching various components to them.

Even 2D games must be manipulated in 3D. Scripts are written in C# (recommended), Boo or

Unityscript (mistakenly called JavaScript) and attached to 3D objects as components.

 Launching Unity for the first time, you may feel like the pilot of a 747 jet plane. There is

much to learn before even the first switch can be flipped. First of all, there’s camera and lights.

When trying to add a simple cube to the scene, it can get lost behind the camera or perhaps be

invisible because there’s no light. In short, there is a learning curve.

 Prepare to spend approximately 8-12 hours getting familiar enough to develop your own

game.Unity was first released in 2005 and the interface hasn’t changed much since. To be frank,

it feels like many of the repetitive tasks in day-to-day Unity game development are busy

work. Adding audio sources, updating prefabs and importing assets are all examples of tasks

that shouldn’t have to be done, or shouldn’t take so long. It would be nice if Unity had a

modern makeover.

 That said, once you’ve created a game with Unity, deployment is a cinch. With a

couple of clicks, you can export your game to mobile, desktop and/or web (web currently requires the

http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802
https://unity3d.com/
http://wiki.unity3d.com/index.php?title=UnityScript_versus_JavaScript
http://en.wikipedia.org/wiki/Unity_%28game_engine%29
http://forum.unity3d.com/threads/148312-how-unity-1-looked-back-in-2005

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Unity player app to be installed). If you have the right license, you can even deploy to

gaming consoles like Xbox, Playstation and Wii.

➢ Corona : Corona is a closed-source 2D game simulator and cloud-build application. Game code

is written in Lua scripts and played back in the Corona simulator. Like Mystique from X-Men,

the simulator can take on many skins, resolutions and ratios. When you’re ready to deploy, it

builds your game in the cloud and delivers you an iOS or Android game client.

 Ah, the sweet joy of developing games with Corona. Everything about the language is

easy. Adding a physics body, for example, takes only one line of code. After a mere 2-4 hours of

getting familiar with the platform you’ll be ready to develop games. And once you start it’s

difficult to stop. The simulator is responsive, quick and polite about using your computer’s

resources. With the simulator and your choice of code editor open side by side, you can save the Lua

file and the simulator instantaneously reloads the game. It’s simply delightful to develop a game with

such rapidity.

 One shortcoming of Corona is its limited deployment options. Only mobile

 platforms like iOS, Android, Kindle and Nook are supported. Windows Phone is coming soon.

Cloud-Imagine a day full of testing your game on the device, tweaking one little thing and waiting a

 few minutes to be able to see if it worked.

 Like Unity, Corona is closed-source and proprietary. There’s no way to make a

modification or fix a bug in the engine, and you cannot learn from its code.

➢ Cocos2D JS : Cocos2D JS is a cross-platform, open-source, free game development SDK. It is

the newest — and perhaps sexiest — member of the Cocos2D family. Essentially it’s a

combination of two popular open-source projects: Cocos2D X for mobile / desktop and

Cocos2D HTML5 for web. While it is currently 2D / 2.5D, there are plans to add 3D support.

 You write game code entirely in JavaScript. On native platforms like mobile and

desktop, your game’s JavaScript is bound to native C++ objects, granting you maximum speed

without having to write any native code. Web platforms run pure JavaScript and render

using Canvas or WebGL, so no player applications need to be installed.

 The easiest way to get started with Cocos2D JS game development is using the

HTML5 platform. Open up a browser window and your favorite text or code editor, save your

http://coronalabs.com/
http://www.cocos2d-x.org/download
http://www.cocos2d-x.org/news/201
http://diveintohtml5.info/canvas.html
http://www.html5rocks.com/en/tutorials/webgl/webgl_fundamentals/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

JavaScript, refresh the browser and voila. It’s a rapid way to develop. When you’re ready to test

and deploy to native platforms, you’ll need Xcode, Visual Studio and/or Eclipse.

 Cocos2D JS games can currently be deployed to iOS, Android, Blackberry,

 Windows Phone, Mac, Windows, Linux and HTML. With such wide deployment options, it’s

easy to see why many game developers are choosing Cocos2D.

➢ Appcelerator Titanium : Titanium is a cross-platform, open-source app development kit and

Eclipse-based IDE. Apps are written in JavaScript and run natively, not just in a WebView. With

Titanium Studio it’s possible to develop, test and deploy to mobile and web platforms.

 For 2D game development, there’s the Platino Game Engine, an open-source — but

 not free — SDK that can be added to your Titanium stack. Getting acquainted with Titanium

(more specifically Platino) is not as easy as it could be. The documentation has holes. For

example, the crucial .center sprite property is left undocumented. Moreover, the physics engine is

cumbersome and archaic. You have to synchronize all physics bodies and sprites manually

using a very non- JavaScript, C-like API.

 On the bright side, one nice thing about Titanium development is that the SDK is

prebuilt. You can run your game on a simulator or device with very short build times.

➢ RapidGame Pro : RapidGame Pro, an open-core game (dual MIT licensed) template based on

Cocos2D JS, to make game development using open source more rapid. It achieves this in a few

ways:

 By providing a project creator tool and game templates that make starting a game

 with scenes, sprites, sound, physics, a server, monetization, social, etc. a breeze.By prebuilding

native libraries.

 By providing and incorporating plugins for IAP, displaying ads, social networking,

 analytics, asynchronous multiplayer and virtual economies that work on all platforms.By

 including example code to a complete game based on multiple currencies.

 Some of RapidGame Pro’s plugins had to be developed from scratch for multiple

platforms. For example, the Facebook plugin — including both social networking and IAP via

Facebook Payments — is written separately in C++ for iOS, C++ and Java for Android, and

http://www.cocos2d-x.org/wiki/Supported_Platforms_and_Programming_Languages
http://www.appcelerator.com/
http://forumone.com/blogs/post/what-titanium-appcelerator-really-and-how-it-works
http://www.appcelerator.com/titanium/titanium-studio/
http://lanica.co/products/platino/engine/
https://github.com/Lanica/Platform-platino
http://docs.lanica.co/docs/#%21/api/Sprite
http://docs.lanica.co/docs/#%21/guide/chipmunk2d
http://www.binpress.com/app/rapidgame-pro-for-ios-android-facebook/1802
http://wizardfu.com/lemonadex/

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

JavaScript for HTML5. All of these implementations are accessible from your game using write

code for and test.

 Likewise, the following code will display a full-screen video advertisement.

 Behind the scenes, this single JavaScript API call runs native C++, Java or JavaScript,

 depending on the platform.

 RapidGame Pro helps perform day-to-day development tasks faster. The Cocos2D X

libraries and plugins are prebuilt, so when you run your game in the simulator or on the device it

will launch almost instantaneously.

 Developing your own game template with social networking, monetization and

other plugins for multiple platforms — for even just one platform — can take months to get

right.RapidGame Pro lets you start with all the little things a pro- grade game needs already done.

 For a game developer, choosing the right cross-platform game engine can be the

single most important decision they make. I hope my insights help you to make that choice.

 (b) What are the three stages of running a game? Explain in details. [10 Marks]

5. (a) Describe the 3D graphic pipeline in detail. Explain the various inputs to this pipeline and

 the operations performed on it by graphics pipeline. [10 Marks]

 In 3D computer graphics, the graphics pipeline or rendering pipeline refers to the

sequence of steps used to create a 2D raster representation of a 3D scene. Plainly speaking, once a 3D

model has been created, for instance in a video game or any other 3D computer animation, the graphics

pipeline is the process of turning that 3D model into what the computer displays.

 In the early history of 3D computer graphics, fixed purpose hardware was used to speed up the

steps of the pipeline through a fixed-function pipeline. Later, the hardware evolved, becoming more

general purpose, allowing greater flexibility in graphics rendering as well as more generalized hardware,

and allowing the same generalized hardware to perform not only different steps of the pipeline, like in

fixed purpose hardware, but even in limited forms of general purpose computing.

 As the hardware evolved, so did the graphics pipelines, the OpenGL, and DirectX pipelines, but

the general concept of the pipeline remains the same. The 3D pipeline usually refers to the most

common form of computer 3D rendering, 3D polygon rendering, distinct from ray tracing, and

https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Fixed-function
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Raytracing

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

raycasting. In particular, 3D polygon rendering is similar to raycasting. In raycasting, a ray originates at

the point where the camera resides, if that ray hits a surface, then the color and lighting of the point on

the surface where the ray hit is calculated.

 In 3D polygon rendering the reverse happens, the area that is in view of the camera is calculated,

and then rays are created from every part of every surface in view of the camera and traced back to the

camera Computers began undergoing a significant change in recent years with the introduction of a

separate video card and the rise of hardware accelerated graphics. This has led to the need for a

programmable graphics pipeline which can be manipulated by shaders

 Since the introduction of the programmable graphics pipeline most fixed-function pipeline

implementations have become obsolete, such as OpenGL's immediate mode, or Direct3D's built in

hardware Transform, clipping, and lightingThe Direct3D 11 programmable pipeline is designed for

generating graphics for realtime gaming applications. This section describes the Direct3D 11

programmable pipeline. The following diagram shows the data flow from input to output through each

of the programmable stages.

https://en.wikipedia.org/wiki/Raycasting
https://en.wikipedia.org/wiki/Video_card
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Fixed-function
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Transform,_clipping,_and_lighting

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Figure : Graphics pipeline

 The graphics pipeline for Microsoft Direct3D 11 supports the same stages as the Direct3D 10

graphics pipeline, with additional stages to support advanced features.

 You can use the Direct3D 11API to configure all of the stages. Stages that feature common

shader cores (the rounded rectangular blocks) are programmable by using the HLSL programming

language. As you will see, this makes the pipeline extremely flexible and adaptable. The following list

specifies the purpose of each of the stages.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205123%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205123%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Input-Assembler Stage - The input-assembler stage supplies data (triangles, lines and points) to

the pipeline.

➢ Vertex-Shader Stage - The vertex-shader stage processes vertices, typically performing

operations such as transformations, skinning, and lighting. A vertex shader always takes a single

input vertex and produces a single output vertex.

➢ Geometry-Shader Stage - The geometry-shader stage processes entire primitives. Its input is a

full primitive (which is three vertices for a triangle, two vertices for a line, or a single vertex for

a point). In addition, each primitive can also include the vertex data for any edge-adjacent

primitives.

 This could include at most an additional three vertices for a triangle or an additional two

vertices for a line. The geometry shader also supports limited geometry amplification and de-

amplification. Given an input primitive, the geometry shader can discard the primitive, or emit

one or more new primitives.

➢ Stream-Output Stage - The stream-output stage streams primitive data from the pipeline to

memory on its way to the rasterizer. Data can be streamed out and/or passed into the rasterizer.

Data streamed out to memory can be recirculated back into the pipeline as input data or read-

back from the CPU.

➢ Rasterizer Stage - The rasterizer clips primitives, prepares primitives for the pixel shader, and

determines how to invoke pixel shaders.

➢ Pixel-Shader Stage - The pixel-shader stage receives interpolated data for a primitive and

generates per-pixel data such as color.

➢ Output-Merger Stage - The output-merger stage combines various types of output data (pixel

shader values, depth and stencil information) with the contents of the render target and

depth/stencil buffers to generate the final pipeline result.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205116%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Vertex_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Geometry_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205121%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205125%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205146%28v=vs.85%29.aspx#Pixel_Shader_Stage
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205120%28v=vs.85%29.aspx

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

➢ Hull-shader, tessellator, and domain-shader stages, which comprise the tessellation stages - The

tessellation stages convert higher-order surfaces to triangles for rendering within the

Direct3D 11 pipeline.

 The Direct3D 11 programmable pipeline is also designed for providing high-speed computing

tasks. A compute shader expands Direct3D 11 beyond graphics to support general purpose GPU

computing.

 (b) What are the core groups in software factory and their interactions? [10 Marks]

 A glue language is a programming language (usually an interpreted scripting language) that is

designed or suited for writing glue code – code to connect software components. They are especially

useful for writing and maintaining:

➢ Custom commands for a command shell

➢ Smaller programs than those that are better implemented in a compiled language

 "Wrapper" programs for executables, like a batch file that moves or manipulates files and does

other things with the operating system before or after running an application like a word processor,

spreadsheet, data base, assembler, compiler, etc.

➢ Scripts that may change

➢ Rapid prototypes of a solution eventually implemented in another, usually compiled, language.

➢ GUI scripting

 With the advent of graphical user interfaces, a specialized kind of scripting language

emerged for controlling a computer. These languages interact with the same graphic windows,

menus, buttons, and so on that a human user would. They do this by simulating the actions of a

user. These languages are typically used to automate user actions. Such languages are also called

"macros" when control is through simulated key presses or mouse clicks, as well as tapping or

pressing on a touch-activated screen.

 These languages could in principle be used to control any GUI application; but, in

practice their use is limited because their use needs support from the application and from the

https://msdn.microsoft.com/en-us/library/windows/desktop/ff476340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476331%28v=vs.85%29.aspx
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Interpreter_%28computing%29
https://en.wikipedia.org/wiki/Glue_code
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Macro_%28computer_science%29#Keyboard_and_mouse_macros

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

operating system. There are a few exceptions to this limitation. Some GUI scripting languages

are based on recognizing graphical objects from their display screen pixels. These GUI scripting

languages do not depend on support from the operating system or application.

➢ Application-specific languages

 Many large application programs include an idiomatic scripting language tailored to the

needs of the application user. Likewise, many computer game systems use a custom scripting

language to express the programmed actions of non-player characters and the game

environment. Languages of this sort are designed for a single application; and, while they may

superficially resemble a specific general-purpose language (e.g. QuakeC, modeled after C), they

have custom features that distinguish them. Emacs Lisp, while a fully formed and capable dialect

of Lisp, contains many special features that make it most useful for extending the editing

functions of Emacs. An application-specific scripting language can be viewed as a domain-

specific programming language specialized to a single application.

➢ Extension/embeddable language

 A number of languages have been designed for the purpose of replacing application-

specific scripting languages by being embeddable in application programs. The application

programmer (working in C or another systems language) includes "hooks" where the scripting

language can control the application. These languages may be technically equivalent to an

application-specific extension language but when an application embeds a "common" language,

the user gets the advantage of being able to transfer skills from application to application. A

more generic alternative is simply to provide a library (often a C library) that a general-purpose

language can use to control the application, without modifying the language for the specific

domain.

 JavaScript began as and primarily still is a language for scripting inside web browsers;

however, the standardization of the language as ECMAScript has made it popular as a general

purpose embeddable language. In particular, the Mozilla implementation SpiderMonkey is

embedded in several environments such as the Yahoo! Widget Engine. Other applications

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Computer_game
https://en.wikipedia.org/wiki/Non-player_character
https://en.wikipedia.org/wiki/QuakeC
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Domain-specific_programming_language
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/SpiderMonkey_%28JavaScript_engine%29
https://en.wikipedia.org/wiki/Yahoo%21_Widget_Engine

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

embedding ECMAScript implementations include the Adobe products Adobe Flash (Action

Script) and Adobe Acrobat (for scripting PDF files).

6. (a) What are Direct-X and open GL? Microsoft did not want to continue supporting DOS. It

saw the future as a 32-bit

 Graphical operating system that was fast enough to support games. In what could charitably be

considered to be practice run, they released WinG, a form of the Game SDK (and a precursor to

DirectX), designed to allow faster access to hardware resources on Current Development Methods

 Windows-based machines, we can remember only one game, SimTower, that was commercially

 released using this (although we’re sure that there were probably more), and the game

suffered from appallingly slow graphic updates.

 WinG died a quiet death, and, meanwhile, Windows 95 was released with a fair amount of pomp

in the closing months of 1995, as we’re sure some of you will remember, Windows 95 sounded the

official Microsoft death knell for 16-bit applications; DOS was dead.

 Except, that is, if you were writing a game. The games industry practically ignored this new

operating system, except to check it for compatibility with their Dos4gw executables. It was not

considered then as a serious target for game development. Microsoft, on the other hand, did not

want to continue supporting DOS, seeing the games industry as the last bastion of the DOS programmer.

 If Microsoft could persuade the game developers to begin producing games for Windows 95, it

will have achieved its aim of phasing out DOS, and shown the world that Windows 95 was the

operating systemof the future. To this end, Microsoft developed DirectX, a library to allow the game

developer direct access to the hardware if required, and to take advantage of any acceleration provided

in the hardware.

 The ideology behind DirectX was to provide a standard interface to the hardware that was easier

to access than had been traditionally possible using DOS. Initially DirectX was touted by Microsoft as

being potentially faster than DOS for graphics, because it would automatically take advantage of any

hardware acceleration that was available.

 DirectX spawned mild interest (and derision), but it was not until the release of DirectX 2 that

people took notice. (Maybe it was the lurid yellow CD with a black radiation warning symbol that

https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Adobe_Flash
https://en.wikipedia.org/wiki/Adobe_Acrobat
https://en.wikipedia.org/wiki/PDF

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

caught their eye.) With DirectX 2, the API had just about become usable, and was taking advantage of

the newly developed Microsoft Component Object Model technology (COM). COM is an object-

oriented technique that allows objects to be easily versioned and (at least in theory) accessible from

languages other than that in which the object was originally written.

During this period, Microsoft had not been lazy in updating its C/C++ compilers. It was painfully aware

that Visual C++ 2.x (which compiled for 32-bit applications) was showing its age, and consequently an

update was released in the form of Visual C++ 4.

This was a bit of a shock to the industry: a whole “generation” of game programmer had grown up with

the concept of “Microsoft = slow, Watcom = fast,” and they were surprised to discover that the

Microsoft compiler produced faster, tighter code than the Watcom compiler. The result of this was the

gradual transferal of game development from targeting DOS to targeting Windows 95. The first game

released as a Windows 95 native executable, taking advantage of DirectX functionality, was a version of

the classic Activision game, Pitfall. The initial release of DirectX was not fully compatible with the

Watcom compiler, forcing anyone who wanted to do serious game development to switch to the

Microsoft compiler. We’ll leave it for the reader to decide whether this was by accident or design.

 With the increasing momentum of Windows 95 game releases, Apple, manufacturers of the

Macintosh line of computers couldn’t sit back and let its (already tenuous) position be eroded further.

More and more games were being released for Windows 95, which further strengthened Windows’

position as the operating system for the masses.

 To fight this onslaught, Apple released the Game Sprockets, a set of components analogous to

(but not compatible with) DirectX for the Macintosh operating system. How successful this was still

remains to be seen, but, to date, only a handful of companies (Blizzard and Bungie being two examples

that spring to mind) are releasing games for both platforms. We’ll plead the fifth on whether this is due

to the difficulty of writing cross-platform code, or whether it is due to lack of sales on the Macintosh.

 Recently, however, Apple has reversed its fortune with the relative success of the “designer”

computer, the iMac, but whether this will impact the games market in any significant fashion remains to

be seen. Since the first imprint of this book, the Game Sprockets have come and gone with little

attention, and Apple is now focusing on their OS X platform with integrated OpenGL and multimedia

support. Although this hasn’t pushed them to the forefront of gaming, a steady stream of titles are

making their way to the Mac, including such notables as Warcraft III and Neverwinter Nights.

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 This just about brings us up to the present day, at least for home computer development DirectX

has matured through nine versions, and there is no serious PC game development done without it,

except in the case of certain OpenGL based exceptions— which are becoming more plentiful nowadays.

The Microsoft compiler has been substantially enhanced and now is considered to produce the fastest

and most compact code and have the friendliest user interface.

 Advantages such as network and multipoint it or debugging and “edit and continue” (which lets

the developer modify code on the fly without fully recompiling the program) have served to make the

life of the game developer easier—at least in some ways. The growing power and diversity of computer

systems have also made the developer’s life more difficult.

The variety of hardware, and the subsequent complexity of programming the API—compounded by the

amount of new information to absorb—is definitely more than before. It’s like the development of

scientific knowledge: In the eighteenth century, it was possible for one person to know all the areas of

science in depth. Now, even after years of study, the best that could be hoped for would be to specialize

in a tiny area.

 (b) Explain different types of game genre with an example. [10 Marks]

 A video game genre is a specific category of games related by a common gameplay

characteristic. Genres are not usually defined by the actual content of the game or its medium of play,

but by its common challenge.[1]

 Genres may encompass a wide variety of games, leading to even more specific classifications

called subgenres. For example, an action game can be classified into many subgenres such as platform

games and fighting games. Some games, most notably browser and mobile games, are commonly

classified into multiple genres.

 The following is a list of all commonly-defined video game genres, with short descriptions for

individual genres

 Action games emphasize physical challenges that require eye-hand coordination and motor skill

to overcome. They center around the player, who is in control of most of the action. Most of the earliest

video games were considered action games; today, it is still a vast genre covering all games that involve

physical challenges.

https://en.wikipedia.org/wiki/Video_game_genre
https://en.wikipedia.org/wiki/List_of_video_game_genres#cite_note-adams2013-c3s1-1
https://en.wikipedia.org/wiki/Action_game
https://en.wikipedia.org/wiki/Platform_game
https://en.wikipedia.org/wiki/Platform_game
https://en.wikipedia.org/wiki/Fighting_game
https://en.wikipedia.org/wiki/Browser_game
https://en.wikipedia.org/wiki/Mobile_game
https://en.wikipedia.org/wiki/Eye-hand_coordination
https://en.wikipedia.org/wiki/Motor_skill

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Action games are classified many subgenres. Platform games and fighting games are among the

best-known subgenres, while shooter games became and continue to be one of the dominant genres in

video gaming since the 1990s. Action games usually involve elements of twitch gameplay.

➢ Platform games

 Platform games are set in an environment with platforms, hence the name platform

game.Platform games (or platformers) are set in a vertical or three-dimensional (3D)

environment. Players guide a character through obstacles, jumping on platforms and battling

enemies in order to advance. They often involve unrealistic physics and special movement

abilities.

 Donkey Kong was one of the earliest and best-known platformers; the American gaming

press classified it using the term climbing game at the time Super Mario Bros. was one of the

best-selling games of all time; more than 40 million copies were sold (excluding Game Boy

Advance and Virtual Console sales). Jumping Flash! introduced 3D graphics to the genre, being

the first console platformer to incorporate 3D graphics.

➢ Action-adventure

 Action-adventure games combine elements of their two component genres, typically

featuring long-term obstacles that must be overcome using a tool or item as leverage (which is

collected earlier), as well as many smaller obstacles almost constantly in the way, that require

elements of action games to overcome. Action-adventure games tend to focus on exploration and

usually involve item gathering, simple puzzle solving, and combat. "Action-adventure" has

become a label which is sometimes attached to games which do not fit neatly into another well

known genre.

 The first action-adventure game was the Atari 2600 game Adventure (1979). It was

directly inspired by the original text adventure, Colossal Cave Adventure. In the process of

adapting a text game to a console with only a joystick for control, designer Warren Robinett

created a new genre. Another typical Action-Adventure game is "The Legend of Zelda" by

Nintendo, which involves puzzle solving, sword fighting, and item collecting. Because of their

prevalence on video game consoles and the absence of typical adventure games, action-

adventure games are often called "adventure games" by modern gamers.

➢ Stealth game

https://en.wikipedia.org/wiki/Platform_games
https://en.wikipedia.org/wiki/Fighting_games
https://en.wikipedia.org/wiki/Shooter_games
https://en.wikipedia.org/wiki/Twitch_gameplay
https://en.wikipedia.org/wiki/Donkey_Kong_%28video_game%29
https://en.wikipedia.org/wiki/Super_Mario_Bros.
https://en.wikipedia.org/wiki/Game_Boy_Advance
https://en.wikipedia.org/wiki/Game_Boy_Advance
https://en.wikipedia.org/wiki/Virtual_Console
https://en.wikipedia.org/wiki/Jumping_Flash%21
https://en.wikipedia.org/wiki/Action-adventure_game
https://en.wikipedia.org/wiki/Atari_2600
https://en.wikipedia.org/wiki/Adventure_%28Atari_2600%29
https://en.wikipedia.org/wiki/Text_adventure
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Warren_Robinett
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Adventure_game

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Stealth games are a somewhat recent subgenre, sometimes referred to as "sneakers" or

"creepers" to contrast with the action-oriented "shooter" subgenre. These games tend to

emphasize subterfuge and precision strikes over the more overt mayhem of shooters, for

example, the Sly Cooper series.

➢ Adventure

 Adventure games were some of the earliest games created, beginning with the text

adventure Colossal Cave Adventure in the 1970s. That game was originally titled simply

"Adventure," and is the namesake of the genre. Over time, graphics have been introduced to the

genre and the interface has evolved.

 Unlike adventure films, adventure games are not defined by story or content. Rather,

adventure describes a manner of gameplay without reflex challenges or action. They normally

require the player to solve various puzzles by interacting with people or the environment, most

often in a non-confrontational way. It is considered a "purist" genre and tends to exclude

anything which includes action elements beyond a mini game.

 Because they put little pressure on the player in the form of action-based challenges or

time constraints, adventure games have had the unique ability to appeal to people who do not

normally play video games. The genre peaked in popularity with the 1993 release of Myst, the

best-selling PC game of all time up to that point. It had four proper sequels, but none managed to

experience the same level of success. The success of Myst also inspired many others to create

similar games with first person perspectives, surreal environments and minimal or no dialogue,

but these neither recaptured the success of Myst nor of earlier personality-driven adventures.

➢ Role-playing video games draw their gameplay from traditional role-playing games like

Dungeons & Dragons. Most of these games cast the player in the role of one or more

"adventurers" who specialize in specific skill sets (such as melee combat or casting magic spells)

while progressing through a predetermined storyline. Many involve manoeuvring these

character(s) through an overworld, usually populated with monsters, that allows access to more

important game locations, such as towns, dungeons, and castles.

 Since the emergence of affordable home computers coincided with the popularity of

paper and pencil role-playing games, this genre was one of the first in video games and

https://en.wikipedia.org/wiki/Stealth_game
https://en.wikipedia.org/wiki/Sly_Cooper
https://en.wikipedia.org/wiki/Adventure_game
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Mini_game
https://en.wikipedia.org/wiki/Myst
https://en.wikipedia.org/wiki/Role-playing_video_game
https://en.wikipedia.org/wiki/Role-playing_game
https://en.wikipedia.org/wiki/Dungeons_%26_Dragons
https://en.wikipedia.org/wiki/Magic_%28gaming%29
https://en.wikipedia.org/wiki/Overworld
https://en.wikipedia.org/wiki/Home_computer
https://en.wikipedia.org/wiki/Paper_and_pencil_game

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

continues to be popular today. Gameplay elements strongly associated with RPGs, such as

statistical character development through the acquisition of experience points, have been widely

adapted to other genres such as action-adventure games.

 Though nearly all of the early entries in the genre were turn-based games,

 many modern role-playing games progress in real-time. Thus, the genre has followed the

strategy game's trend of moving from turn-based to real-time combat.

7. Write short notes on following (any four):-

(a) Symmetric and Asymmetric Interaction. [5 Marks]

 There are two main types of interaction in the matrix: symmetric and asymmetric. Symmetric

interactions are the same both ways. For example, the behavior of the ball and the bat are not different

depending on how we consider the collision. That is, if we say that the ball collides with the bat, we

would expect exactly the same results to occur as if we had said the bat collides with the ball. The

semantics do not matter.Symmetric interactions are shown as squares in the matrix.

 Asymmetric interactions are shown in the matrix as a square split into two triangles. An

asymmetric interaction is different depending on the direction. In this case, the semantics do matter.

Each triangle represents one direction of the interaction. Taking the solitary case from the Pong matrix

as an example, we could say that a goal causes the score to increment by one, but the score incrementing

by one does not cause a goal to occur—cause-effect, not effect-cause. (There’ll be no breaking the laws

of causality in this book!) The matrix allows us to perform a visual check on our interactions. We can

check that they are what we would expect, and we can see if we have missed any or made any errors.

We may be able to spot unexpected chain reactions (the sort of things that in some cases will enhance a

game, but in other cases will render it virtually unplayable). These things will be picked up in play-

testing, but the sooner it is spotted the cheaper it is to fix.

 (b) Audio Formats. [5 Marks]

 An audio file format is a file format for storing digital audio data on a computer system. The bit

layout of the audio data (excluding metadata) is called the audio coding format and can be

uncompressed, or compressed to reduce the file size, often using lossy compression. The data can be a

https://en.wikipedia.org/wiki/Experience_point
https://en.wikipedia.org/wiki/Action-adventure_game
https://en.wikipedia.org/wiki/Turn-based_game
https://en.wikipedia.org/wiki/Strategy_game
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Digital_audio
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Audio_coding_format
https://en.wikipedia.org/wiki/Audio_compression_%28data%29
https://en.wikipedia.org/wiki/Lossy_compression

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

raw bitstream in an audio coding format, but it is usually embedded in a container format or an audio

data format with defined storage layer.

There are three major groups of audio file formats:

 Uncompressed audio formats, such as WAV, AIFF, AU or raw header-less PCM; Formats with

lossless compression, such as FLAC, Monkey's Audio (filename extension .ape), WavPack (filename

extension .wv), TTA, ATRAC Advanced Lossless, ALAC (filename extension .m4a), MPEG-4 SLS,

MPEG-4 ALS, MPEG-4 DST, Windows Media Audio Lossless (WMA Lossless), and Shorten (SHN).

 Formats with lossy compression, such as Opus, MP3, Vorbis, Musepack, AAC, ATRAC and

Windows Media Audio Lossy (WMA lossy).

➢ Uncompressed audio format

 One major uncompressed audio format, LPCM, is the same variety of PCM as used in

Compact Disc Digital Audio and is the format most commonly accepted by low level audio APIs

and D/A converter hardware. Although LPCM can be stored on a computer as a raw audio format,

it is usually stored in a .wav file on Windows or in a .aiff file on Mac OS. The AIFF format is based on

the Interchange File Format (IFF), and the WAV format is based on the similar Resource Interchange

File Format (RIFF). WAV and AIFF are not inherently lossless; they're designed to store a wide variety

of audio formats, lossless and lossy; they just add a small, metadata-containing header before the audio

data to declare the format of the audio data, such as LPCM with a particular sample rate, bit depth,

endianness and number of channels. Since WAV and AIFF are widely supported and can store LPCM,

➢ Lossless compressed audio format

 A lossless compressed format stores data in less space without losing any information.

The original, uncompressed data can be recreated from the compressed version.

 Uncompressed audio formats encode both sound and silence with the same number of

bits per unit of time. Encoding an uncompressed minute of absolute silence produces a file of the same

size as encoding an uncompressed minute of music. In a lossless compressed format, however, the

music would occupy a smaller file than an uncompressed format and the silence would take up almost

no space at all.

➢ Lossy compressed audio format

https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/Container_format_%28digital%29
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/AIFF
https://en.wikipedia.org/wiki/Au_file_format
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Free_Lossless_Audio_Codec
https://en.wikipedia.org/wiki/Monkey%27s_Audio
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/WavPack
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/TTA_%28codec%29
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Apple_Lossless
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/MPEG-4_SLS
https://en.wikipedia.org/wiki/MPEG-4_ALS
https://en.wikipedia.org/wiki/MPEG-4_DST
https://en.wikipedia.org/wiki/Windows_Media_Audio#Windows_Media_Audio_Lossless
https://en.wikipedia.org/wiki/Shorten_%28file_format%29
https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/Opus_%28audio_format%29
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Vorbis
https://en.wikipedia.org/wiki/Musepack
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/ATRAC
https://en.wikipedia.org/wiki/Windows_Media_Audio#WIndows_Media_Audio_Lossy
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Raw_audio_format
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Interchange_File_Format
https://en.wikipedia.org/wiki/RIFF_%28File_format%29
https://en.wikipedia.org/wiki/RIFF_%28File_format%29
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
https://en.wikipedia.org/wiki/Audio_bit_depth
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Audio_channel

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Lossy compression enables even greater reductions in file size by removing some of the

audio information and simplifying the data. This of course results in a reduction in audio quality, but a

variety of techniques are used, mainly by exploiting psychoacoustics, to remove the parts of the sound

that have the least effect on perceived quality, and to minimize the amount of audible noise added

during the process. The popular MP3 format is probably the best-known example, but the AAC

format found on the iTunes Music Store is also common. Most formats offer a range of degrees of

compression, generally measured in bit rate. The lower the rate, the smaller the file and the more

significant the quality loss

 (c) Game engine. [5 Marks]

 A game engine is a software framework designed for the creation and development of video

games. Developers use them to create games for consoles, mobile devices and personal computers. The

core functionality typically provided by a game engine includes a rendering engine (“renderer”) for 2D

or 3D graphics, a physics engine or collision detection (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading, localization

support, and a scene graph.

 The process of game development is often economized, in large part, by reusing/adapting the

same game engine to create different games or to make it easier to "port" games to multiple platforms.

Other middleware solutions, game engines usually provide platform abstraction, allowing the same

game to be run on various platforms including game consoles and personal computers with few, if any,

changes made to the game source code.

 Often, game engines are designed with a component-based architecture that allows specific

systems in the engine to be replaced or extended with more specialized (and often more expensive)

game middleware components such as Havok for physics, Miles Sound System for sound, or Bink for

Video. Some game engines such as RenderWare are even designed as a series of loosely connected

game middleware components that can be selectively combined to create a custom engine, instead of the

more common approach of extending or customizing a flexible integrated solution. However

extensibility is achieved, it remains a high priority for game engines due to the wide variety of uses for

which they are applied.

https://en.wikipedia.org/wiki/Psychoacoustics
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game_developer
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
https://en.wikipedia.org/wiki/2D_computer_graphics
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Physics_engine
https://en.wikipedia.org/wiki/Collision_detection
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Game_AI
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Scene_graph
https://en.wikipedia.org/wiki/Game_development
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Platform_%28computing%29
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_componentry
https://en.wikipedia.org/wiki/Havok_%28software%29
https://en.wikipedia.org/wiki/Miles_Sound_System
https://en.wikipedia.org/wiki/Bink_Video
https://en.wikipedia.org/wiki/RenderWare
https://en.wikipedia.org/wiki/Extensibility

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Despite the specificity of the name, game engines are often used for other kinds of interactive

applications with real-time graphical needs such as marketing demos, architectural visualizations,

training simulations, and modeling environments.

 Some game engines only provide real-time 3D rendering capabilities instead of the wide range

of functionality needed by games. These engines rely upon the game developer to implement the rest of

this functionality or assemble it from other game middleware components. These types of engines are

generally referred to as a "graphics engine," "rendering engine," or "3D engine" instead of the more

encompassing term "game engine."

 This terminology is inconsistently used as many full-featured 3D game engines are referred to

simply as "3D engines." A few examples of graphics engines are: Crystal Space, Genesis3D, Irrlicht,

OGRE, RealmForge, Truevision3D, and Vision Engine. Modern game or graphics engines generally

provide a scene graph, which is an object-oriented representation of the 3D game world which often

simplifies game design and can be used for more efficient rendering of vast virtual worlds.

 As technology ages, the components of an engine may become outdated or insufficient for the

requirements of a given project. Since the complexity of programming an entirely new engine may

result in unwanted delays (or necessitate that the project be completely restarted), a development team

may elect to update their existing engine with newer functionality or components

 (d) Game documentation. [5 Marks]

 A game design document (often abbreviated GDD) is a highly descriptive living design

document of the design for a video game. A GDD is created and edited by the development team and it

is primarily used in the video game industry to organize efforts within a development team. The

document is created by the development team as result of collaboration between their designers, artists

and programmers as a guiding vision which is used throughout the game development process.

 When a game is commissioned by a game publisher to the development team, the document

must be created by the development team and it is often attached to the agreement between publisher

and developer; the developer has to adhere to the GDD during game development process.

https://en.wikipedia.org/wiki/Video_game_developer
https://en.wikipedia.org/wiki/Crystal_Space
https://en.wikipedia.org/wiki/Genesis3D
https://en.wikipedia.org/wiki/Irrlicht_Engine
https://en.wikipedia.org/wiki/OGRE
https://en.wikipedia.org/wiki/RealmForge
https://en.wikipedia.org/wiki/Truevision3D
https://en.wikipedia.org/wiki/Vision_Engine
https://en.wikipedia.org/wiki/Scene_graph
https://en.wikipedia.org/wiki/Living_document
https://en.wikipedia.org/wiki/Software_design_document
https://en.wikipedia.org/wiki/Software_design_document
https://en.wikipedia.org/wiki/Video_game_design
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game_industry
https://en.wikipedia.org/wiki/Game_designer
https://en.wikipedia.org/wiki/Game_artist
https://en.wikipedia.org/wiki/Game_programmer
https://en.wikipedia.org/wiki/Video_game_development

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

Game development, production, or design is a process that starts from an idea or concept. Often the idea

is based on a modification of an existing game concept. The game idea may fall within one or several

genres. Designers often experiment with different combinations of genres.

 Game designer usually produces initial game proposal document, that contains the concept,

gameplay, feature list, setting and story, target audience, requirements and schedule, staff and budget

estimates. Different companies have different formal procedures and philosophies regarding game

design and development. There is no standardized development method; however commonalities exist.

 Game development is undertaken by a game developer—ranging from an individual to a large

company. There can be independent or publisher-owned studios. Independent developers rely on

financial support from a game publisher. They usually have to develop a game from concept to

prototype without external funding. The formal game proposal is then submitted to publishers, who may

finance the game development from several months to years.

 The publisher would retain exclusive rights to distribute and market the game and would often

own the intellectual property rights for the game franchise. Publisher's company may also own the

developer's company, or it may have internal development studio(s). Generally the publisher is the one

who owns the game's intellectual property rights.

 All but the smallest developer companies work on several titles at once. This is necessary

because of the time taken between shipping a game and receiving royalty payments, which may be

between 6 to 18 months. Small companies may structure contracts, ask for advances on royalties, use

shareware distribution, employ part-time workers and use other methods to meet payroll demands.

 Console manufacturers, such as Microsoft, Nintendo, or Sony, have a standard set of technical

requirements that a game must conform to in order to be approved. Additionally, the game concept must

be approved by the manufacturer, who may refuse to approve certain titles.

 Most modern PC or console games take from one to three years to complete where as a mobile

game can be developed in a few months.[37] The length of development is influenced by a number of

factors, such as genre, scale, development platform and amount of assets.

 (e) Game play. [5 Marks]

https://en.wikipedia.org/wiki/Game_genre
https://en.wikipedia.org/wiki/Video_game_developer
https://en.wikipedia.org/wiki/Video_game_publisher
https://en.wikipedia.org/wiki/Intellectual_property
https://en.wikipedia.org/wiki/Console_manufacturer
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Nintendo
https://en.wikipedia.org/wiki/Sony
https://en.wikipedia.org/wiki/Video_game_development#cite_note-MGA_SoA-37
https://en.wikipedia.org/wiki/Computer_and_video_game_genres

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 Gameplay is the specific way in which players interact with a game, and in particular with video

games. Gameplay is the pattern defined through the game rules, connection between player and the

game, challenges and overcoming them, plot and player's connection with it. Video game gameplay is

distinct from graphics and audio elements.

 Interaction is a kind of action that occurs as two or more objects have an effect upon one

another. The idea of a two-way effect is essential in the concept of interaction, as opposed to a one-way

causal effect. A closely related term is interconnectivity, which deals with the interactions of

interactions within systems: combinations of many simple interactions can lead to surprising emergent

phenomena. Interaction has different tailored meanings in various sciences. Changes can also involve

interaction.

 Casual examples of interaction outside science include:

➢ Communication of any sort, for example two or more people talking to each other, or

communication among groups, organizations, nations or states: trade, migration, foreign

relations, transportation

➢ The feedback during the operation of machines such as a computer or tool, for example the

interaction between a driver and the position of his or her car on the road: by steering the driver

influences this position, by observation this information returns to the driver.

 (f) Scene nodes. [5 Marks]

 A scene graph is a set of tree data structures where every item has zero or one parent, and each

item is either a "leaf" with zero sub-items or a "branch" with zero or more sub-items.

 Each item in the scene graph is called a Node. Branch nodes are of type Parent, whose concrete

subclasses are Group, Region, and Control, or subclasses thereof.

 Leaf nodes are classes such as Rectangle, Text, ImageView, MediaView, or other such leaf

classes which cannot have children. Only a single node within each scene graph tree will have no

parent, which is referred to as the "root" node.

 There may be several trees in the scene graph. Some trees may be part of a Scene, in which case

they are eligible to be displayed. Other trees might not be part of any Scene.

https://en.wikipedia.org/wiki/Player_%28game%29
https://en.wikipedia.org/wiki/Interaction
https://en.wikipedia.org/wiki/Game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Interconnectivity
https://en.wikipedia.org/wiki/Emergence
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Group_%28sociology%29
https://en.wikipedia.org/wiki/International_relations
https://en.wikipedia.org/wiki/International_relations
https://en.wikipedia.org/wiki/Feedback
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Group.html
https://docs.oracle.com/javafx/2/api/javafx/scene/layout/Region.html
https://docs.oracle.com/javafx/2/api/javafx/scene/control/Control.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Rectangle.html
https://docs.oracle.com/javafx/2/api/javafx/scene/text/Text.html
https://docs.oracle.com/javafx/2/api/javafx/scene/image/ImageView.html
https://docs.oracle.com/javafx/2/api/javafx/scene/media/MediaView.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

 A node may occur at most once anywhere in the scene graph. Specifically, a node must appear

no more than once in all of the following: as the root node of a Scene, the children ObservableList of a

Parent, or as the clip of a Node.

 The scene graph must not have cycles. A cycle would exist if a node is an ancestor of itself in

the tree, considering the Group content ObservableList, Parent children ObservableList, and Node clip

relationships mentioned above.

 If a program adds a child node to a Parent (including Group, Region, etc) and that node is

already a child of a different Parent or the root of a Scene, the node is automatically (and silently)

removed from its former parent. If a program attempts to modify the scene graph in any other way that

violates the above rules, an exception is thrown, the modification attempt is ignored and the scene graph

is restored to its previous state.

 It is possible to rearrange the structure of the scene graph, for example, to move a subtree from

one location in the scene graph to another. In order to do this, one would normally remove the subtree

from its old location before inserting it at the new location. However, the subtree will be automatically

removed as described above if the application doesn't explicitly remove it.

 Node objects may be constructed and modified on any thread as long they are not yet attached to

a Scene. An application must attach nodes to a Scene, and modify nodes that are already attached to a

Scene, on the JavaFX Application Thread.

➢ String ID

 Each node in the scene graph can be given a unique id. This id is much like the "id" attribute of

an HTML tag in that it is up to the designer and developer to ensure that the id is unique within the

scene graph. A convenience function called lookup(String) can be used to find a node with a unique id

within the scene graph, or within a subtree of the scene graph. The id can also be used identify

nodes for applying styles; see the CSS section below.

➢ Coordinate System

 The Node class defines a traditional computer graphics "local" coordinate system in which the x

axis increases to the right and the y axis increases downwards. The concrete node classes for shapes

provide variables for defining the geometry and location of the shape within this local coordinate space.

https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Group.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Parent.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Scene.html
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html#idProperty%28%29
https://docs.oracle.com/javafx/2/api/javafx/scene/Node.html#lookup%28java.lang.String%29

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

For example, Rectangle provides x, y, width, height variables while Circle provides centerX, centerY,

and radius.

 At the device pixel level, integer coordinates map onto the corners and cracks between the pixels

and the centers of the pixels appear at the midpoints between integer pixel locations. Because all

coordinate values are specified with floating point numbers, coordinates can precisely point to these

corners (when the floating point values have exact integer values) or to any location on the pixel. For

example, a coordinate of (0.5, 0.5) would point to the center of the upper left pixel on the Stage.

Similarly, a rectangle at (0, 0) with dimensions of 10 by 10 would span from the upper left corner of the

upper left pixel on the Stage to the lower right corner of the 10th pixel on the 10th scanline. The pixel

center of the last pixel inside that rectangle would be at the coordinates (9.5, 9.5).

 In practice, most nodes have transformations applied to their coordinate system as

mentioned below. As a result, the information above describing the alignment of device coordinates to

the pixel grid is relative to the transformed coordinates, not the local coordinates of the nodes. The

Shape class describes some additional important context-specific information about coordinate mapping

and how it can affect rendering.

➢ Transformations

 Any Node can have transformations applied to it. These include translation,

rotation,scaling, or shearing.

 A translation transformation is one which shifts the origin of the node's coordinate space

along either the x or y axis. For example, if you create a Rectangle which is drawn at the origin (x=0,

y=0) and has a width of 100 and a height of 50, and then apply a Translate with a shift of 10 along the x

axis (x=10), then the rectangle will appear drawn at (x=10, y=0) and remain 100 points wide and 50 tall.

Note that the origin was shifted, not the x variable of the rectangle.

 A common node transform is a translation by an integer distance, most often used to lay

out nodes on the stage. Such integer translations maintain the device pixel mapping so that local

coordinates that are integers still map to the cracks between pixels.

 A rotation transformation is one which rotates the coordinate space of the node about

 a specified "pivot" point, causing the node to appear rotated. For example, if you create a

Rectangle which is drawn at the origin (x=0, y=0) and has a width of 100 and height of 30 and

https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Rectangle.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Circle.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Shape.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Rectangle.html
https://docs.oracle.com/javafx/2/api/javafx/scene/transform/Translate.html
https://docs.oracle.com/javafx/2/api/javafx/scene/shape/Rectangle.html

Tulsiramji Gaikwad-Patil College of Engineering and Technology
Wardha Road, Nagpur-441 108

NAAC Accredited

 Department of Information Technology

you apply a Rotate with a 90 degree rotation (angle=90) and a pivot at the origin (pivotX=0, pivotY=0),

then the rectangle will be drawn as if its x and y were zero but its height was 100 and its width -30.

 That is, it is as if a pin is being stuck at the top left corner and the rectangle is

 rotating 90 degrees clockwise around that pin. If the pivot point is instead placed in the

center of the rectangle (at point x=50, y=15) then the rectangle will instead appear to rotate about

its center.

 Mr. Jayant Rohankar

Subject I/C HoD [Info. Tech.]

https://docs.oracle.com/javafx/2/api/javafx/scene/transform/Rotate.html

