

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Information Technology

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: DBMS

Semester: I UNIT: I

UNIT 1: Syllabus

Database Concepts –Introduction, Data, Information, Metadata, Terminology of file, Association

between fields, Entities and their attributes, relationship, records and files, abstraction and data

integration, Association between files(record types) conventional file processing systems, Database

System, Components of Database Management system-(Classification of DBMS users, DBMS facilities,

Structure of a DBMS, Database access), Advantages and Disadvantages of DBMS, Three level

architecture proposal for DBMS, Mapping between views, Data Independence.

(A) Explain the following in the detail

i)Concurrency control: In information technology and computer science, especially in the fields

of computer programming, operating systems, multiprocessors, and databases, concurrency

control ensures that correct results for concurrent operations are generated, while getting those

results as quickly as possible.

Computer systems, both software and hardware, consist of modules, or components. Each

component is designed to operate correctly, i.e., to obey or to meet certain consistency rules.

When components that operate concurrently interact by messaging or by sharing accessed data

(in memory or storage), a certain component's consistency may be violated by another

component. The general area of concurrency control provides rules, methods, design

methodologies, and theories to maintain the consistency of components operating concurrently

while interacting, and thus the consistency and correctness of the whole system. Introducing

concurrency control into a system means applying operation constraints which typically result in

some performance reduction. Operation consistency and correctness should be achieved with as

good as possible efficiency, without reducing performance below reasonable levels. Concurrency

control can require significant additional complexity and overhead in a concurrent algorithm

compared to the simpler sequential algorithm.

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Scientific_theory
https://en.wikipedia.org/wiki/Concurrent_algorithm
https://en.wikipedia.org/wiki/Sequential_algorithm

For example, a failure in concurrency control can result in data corruption from torn read or

write operations

ii)Atomicity property: In database systems, atomicity (or atomicness[citation needed]; from Greek

atomos, undividable) is one of the ACID transaction properties. An atomic transaction is an

indivisible and irreducible series of database operations such that either all occur, or nothing

occurs.[1] A guarantee of atomicity prevents updates to the database occurring only partially,

which can cause greater problems than rejecting the whole series outright. As a consequence, the

transaction cannot be observed to be in progress by another database client. At one moment in

time, it has not yet happened, and at the next it has already occurred in whole (or nothing

happened if the transaction was cancelled in progress).

An example of an atomic transaction is a monetary transfer from bank account A to account B. It

consists of two operations, withdrawing the money from account A and saving it to account B.

Performing these operations in an atomic transaction ensures that the database remains in a

consistent state, that is, money is not lost nor created if either of those two operations fail.[2]

(B) Give the level architecture proposal for DBMS ?

Ans: Objective of three level architecture proposal for DBMS

• All users should be able to access same data.

• A user's view is immune to changes made in other views.

• Users should not need to know physical database storage details.

• DBA should be able to change database storage structures without affecting the users'

views.

• Internal structure of database should be unaffected by changes to physical aspects of

storage.

• DBA should be able to change conceptual structure of database without affecting all

users.

The architecture of a database management system can be broadly divided into three

levels :

a. External level

b. Conceptual level

c. Internal level

https://en.wikipedia.org/wiki/Data_corruption
https://en.wikipedia.org/w/index.php?title=Torn_data-access_operation&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Torn_data-access_operation&action=edit&redlink=1
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Atomicity_%28database_systems%29#cite_note-1
https://en.wikipedia.org/wiki/Data_consistency
https://en.wikipedia.org/wiki/Atomicity_%28database_systems%29#cite_note-2

Above three points are explain in detail given bellow:-

External Level:

 This is the highest level, one that is closest to the user. It is also called the user view.

The user view is different from the way data is stored in the database. This view

describes only a part of the actual database. Because each user is not concerned with the

entire database, only the part that is relevant to the user is visible. For example, end users

and application programmers get different external views.

 Each user uses a language to carry out database operations. The application

programmer uses either a conventional third-generation language, such as COBOL or C,

or a fourth-generation language specific to the DBMS, such as visual FoxPro or MS

Access.

The end user uses a query language to access data from the database. A query language is

a combination of three subordinate language :

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 Data Control Language (DCL)

The data definition language defines and declares the database object, while the data

manipulation language performs operations on these objects. The data control language is

used to control the user’s access to database objects.

Conceptual Level: - This level comes between the external and the internal levels.

The conceptual level represents the entire database as a whole, and is used by the DBA.

This level is the view of the data “as it really is”. The user’s view of the data is

constrained by the language that they are using. At the conceptual level, the data is

viewed without any of these constraints

Internal Level: - This level deals with the physical storage of data, and is the

lowest level of the architecture. The internal level describes the physical sequence of the

stored records

 So that objective of three level of architecture proposal for DBMS are suitable

explain in above.

(C) Describe the structure of DBMS?

Ans: DBMS (Database Management System) acts as an interface between the user and

the database. The user requests the DBMS to perform various operations (insert, delete,

update and retrieval) on the database. The components of DBMS perform these requested

operations on the database and provide necessary data to the users.

 Fig: Structure of Database Management System

Components of DBMS: -

DDL Compiler

Data Manager

File Manager

Disk Manager

Query Processor

Telecommunication System

Data Files

Data Dictionary

Access Aids

1. DDL Compiler - Data Description Language compiler processes schema definitions

specified in the DDL. It includes metadata information such as the name of the files, data

items, storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer - The DML commands such as insert, update,

delete, retrieve from the application program are sent to the DML compiler for

compilation into object code for database access. The object code is then optimized in the

best way to execute a query by the query optimizer and then send to the data manager.

3. Data Manager - The Data Manager is the central software component of the DBMS

also knows as Database Control System.

 The Main Functions Of Data Manager Are: –

Convert operations in user's Queries coming from the application programs or

combination of DML Compiler and Query optimizer which is known as Query Processor

from user's logical view to physical file system.

• Controls DBMS information access that is stored on disk.

• It also controls handling buffers in main memory.

• It also enforces constraints to maintain consistency and integrity of the data.

• It also synchronizes the simultaneous operations performed by the concurrent

users.

• It also controls the backup and recovery operations.

4. Data Dictionary - Data Dictionary is a repository of description of data in the

database. It contains information about

1. Data - names of the tables, names of attributes of each table, length of

attributes, and number of rows in each table.

2. Relationships between database transactions and data items referenced by

them which is useful in determining which transactions are affected when certain

data definitions are changed.

3. Constraints on data i.e. range of values permitted.

4. Detailed information on physical database design such as storage

structure, access paths, files and record sizes.

5. Access Authorization - is the Description of database users their

responsibilities and their access rights.

6. Usage statistics such as frequency of query and transactions.

7. Data dictionary is used to actually control the data integrity, database

operation and accuracy. It may be used as a important part of the DBMS.

8. Importance of Data Dictionary -

9. Data Dictionary is necessary in the databases due to following reasons:

10. It improves the control of DBA over the information system and user's

understanding of use of the system.

11. • It helps in document ting the database design process by storing

documentation of the result of every design phase and design decisions.

 5. Data Files - It contains the data portion of the database.

6. Compiled DML - The DML complier converts the high level Queries into low level

file access commands known as compiled DML.

7. End Users : The users of the database system can be classified in the following

groups, depending on their degree of expertise or the mode of their interactions with the

DBMS.

 1. Naïve users

 2. Online Users

 3. Application Programmers

 4. Database administrator

 i) Naïve User: Naive users who need not have aware of the present of the

database system or any other system.. A user of an automatic teller falls under this

category. The user is instructed through each step of a transaction; he or she responds by

pressing a coded key or entering a numeric value. The operations that can be performed

by this calls of users are very limited and affect a precise portion of the database; in case

of the user of the automatic teller machine, only one or more of her or his own accounts.

Other such naive users are where the type and range of response is always indicated to

the user. Thus, a very competent database designer could be allowed to use a particular

database system only as a naive user.

 ii) Online users: There are users who may communicate with the database

directly via an online terminal or indirectly via a user interface and application program.

These users are aware of the presence of the database system and may have acquired a

certain amount of expertise in the limited interaction they are permitted with the database

through the intermediate application program. The more sophisticated of these users may

also use a data manipulation language to manipulate the database directly. On-line users

can also be naive users requiring help such as menus.

 iii) Application Users: Professional programmers who are responsible for

developing application programs or user interfaces utilized by the naive and online users

fall into this category. The application programs could be written in a general purpose

programming language such as Assembler C, COBOL, FORTRAN, PASCAL, or PL/I

and include the commands required to manipulate the database.

 iv) Database Administrator: Centralized control of the database is

exerted by a person or group of persons under the supervision of a high level

administrator. This person or group is referred to as the database administrator (DBA).

They are users who are the most familiar with the database and are responsible for

creating, modifying and maintaining its three levels.

 The DBA us the custodian of the data and controls the database structure.

The DBA administers the three levels of the database and in consultation with the overall

user community, sets up the definition of the global view or conceptual level of the

database. The DBA further specifies the external view of the various users and

applications and is responsible for definition and implementation of the internal level,

including the storage structure and access methods to be used for the optimum

performance of the DBMS.

(D) What are the advantage o f using a DBMS over the conventional fole processing

system?

Ans: A database is a collection of non-redundant data which can be shared by different

application systems stresses the importance of multiple applications, data sharing the

spatial database becomes a common resource for an agency implies separation of

physical storage from use of the data by an application program, i.e. program/data

independence the user or programmer or application specialist need not know the details

of how the data are stored such details are "transparent to the user" changes can be made

to data without affecting other components of the system. e.g. change format of data

items (real to integer, arithmetic operations) change file structure (reorganize data

internally or change mode of access) relocate from one device to another, e.g. from

optical to magnetic storage, from tape to disk

 Advantages:

1. Control of data redundancy.

2. Data consistency

3. More information from the same amount of data.

4. Sharing of data.

5. Improved data integrity.

6. Improved security.

7. Enforcement of standards.

8. Economy of scale.

1. Controlling Data Redundancy - In the conventional file processing system,

Every user group maintains its own files for handling its data files. This may lead

to

• Duplication of same data in different files.

• Wastage of storage space, since duplicated data is stored.

• Errors may be generated due to pupation of the same data in different files.

• Time in entering data again and again is wasted.

• Computer Resources are needlessly used.

• It is very difficult to combine information

2. Elimination of Inconsistency - In the file processing system information is duplicated

throughout the system. So changes made in one file may be necessary be carried

over to another file. This may lead to inconsistent data. So we need to remove this

duplication of data in multiple file to eliminate inconsistency.

3 Better service to the users - A DBMS is often used to provide better services to the

users. In conventional system, availability of information is often poor, since it

normally difficult to obtain information that the existing systems were not designed

for. Once several conventional systems are combined to form one centralized

database, the availability of information and its update ness is likely to improve since

the data can now be shared and DBMS makes it easy to respond to anticipated

information requests.

Centralizing the data in the database also means that user can obtain new and

combined information easily that would have been impossible to obtain otherwise.

Also use of DBMS should allow users that don't know programming to interact with

the data more easily, unlike file processing system where the programmer may need

to write new programs to meet every new demand.

4. Flexibility of the System is improved - Since changes are often necessary to the

contents of the data stored in any system, these changes are made more easily in a

centralized database than in a conventional system. Applications programs need not

to be changed on changing the data in the database.

5. Integrity can be improved - Since data of the organization using database approach

is centralized and would be used by a number of users at a time. It is essential to

enforce integrity-constraints.

In the conventional systems because the data is duplicated in multiple files so

updating or changes may sometimes lead to entry of incorrect data in some files

where it exists.

6. Standards can be enforced - Since all access to the database must be through DBMS,

so standards are easier to enforce. Standards may relate to the naming of data, format

of data, structure of the data etc. Standardizing stored data formats is usually

desirable for the purpose of data interchange or migration between systems.

7. Security can be improved - In conventional systems, applications are developed in an

adhoc/temporary manner. Often different system of an organization would access

different components of the operational data, in such an environment enforcing

security can be quiet difficult. Setting up of a database makes it easier to enforce

security restrictions since data is now centralized. It is easier to control who has

access to what parts of the database. Different checks can be established for each type

of access (retrieve, modify, delete etc.) to each piece of information in the database.

8. Organization's requirement can be identified - All organizations have sections and

departments and each of these units often consider the work of their unit as the most

important and therefore consider their need as the most important. Once a database

has been setup with centralized control, it will be necessary to identify organization's

requirement and to balance the needs of the competating units. So it may become

necessary to ignore some requests for information if they conflict with higher priority

need of the organization.

It is the responsibility of the DBA (Database Administrator) to structure the database

system to provide the overall service that is best for an organization.

9. Overall cost of developing and maintaining systems is lower - It is much easier to

respond to unanticipated requests when data is centralized in a database than when it

is stored in a conventional file system. Although the initial cost of setting up of a

database can be large, one normal expects the overall cost of setting up of a database,

developing and maintaining application programs to be far lower than for similar

service using conventional systems, Since the productivity of programmers can be

higher in using non-procedural languages that have been developed with DBMS than

using procedural languages.

10. Data Model must be developed - Perhaps the most important advantage of setting up

of database system is the requirement that an overall data model for an organization

be build. In conventional systems, it is more likely that files will be designed as per

need of particular applications demand. The overall view is often not considered.

Building an overall view of an organization's data is usual cost effective in the long

terms.

11. Provides backup and Recovery - Centralizing a database provides the schemes such

as recovery and backups from the failures including disk crash, power failures,

software errors which may help the database to recover from the inconsistent state to

the state that existed prior to the occurrence of the failure, though methods are very

complex.

E) Explain with diagram structure of DBMS and steps involved in database access.

Ans: DBMS (Database Management System) acts as an interface between the user and

the database. The user requests the DBMS to perform various operations (insert, delete,

update and retrieval) on the database. The components of DBMS perform these requested

operations on the database and provide necessary data to the users.

Fig: Structure of Database Management System

Components of DBMS

DDL Compiler

Data Manager

File Manager

Disk Manager

Query Processor

Telecommunication System

Data Files

Data Dictionary

Access Aids

1. DDL Compiler - Data Description Language compiler processes schema definitions

specified in the DDL. It includes metadata information such as the name of the files, data

items, storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer - The DML commands such as insert, update,

delete, retrieve from the application program are sent to the DML compiler for

compilation into object code for database access. The object code is then optimized in the

best way to execute a query by the query optimizer and then send to the data manager.

3. Data Manager - The Data Manager is the central software component of the DBMS

also knows as Database Control System.

 The Main Functions Of Data Manager Are: –

Convert operations in user's Queries coming from the application programs or

combination of DML Compiler and Query optimizer which is known as Query Processor

from user's logical view to physical file system.

• Controls DBMS information access that is stored on disk.

• It also controls handling buffers in main memory.

• It also enforces constraints to maintain consistency and integrity of the data.

• It also synchronizes the simultaneous operations performed by the concurrent

users.

• It also controls the backup and recovery operations.

4. Data Dictionary - Data Dictionary is a repository of description of data in the

database. It contains information about

12. Data - names of the tables, names of attributes of each table, length of

attributes, and number of rows in each table.

13. Relationships between database transactions and data items referenced by

them which is useful in determining which transactions are affected when certain

data definitions are changed.

14. Constraints on data i.e. range of values permitted.

15. Detailed information on physical database design such as storage

structure, access paths, files and record sizes.

16. Access Authorization - is the Description of database users their

responsibilities and their access rights.

17. Usage statistics such as frequency of query and transactions.

18. Data dictionary is used to actually control the data integrity, database

operation and accuracy. It may be used as a important part of the DBMS.

19. Importance of Data Dictionary -

20. Data Dictionary is necessary in the databases due to following reasons:

21. It improves the control of DBA over the information system and user's

understanding of use of the system.

22. • It helps in document ting the database design process by storing

documentation of the result of every design phase and design decisions.

23. It helps in searching the views on the database definitions of those views.

5. Data Files - It contains the data portion of the database.

6. Compiled DML - The DML complier converts the high level Queries into low level

file access commands known as compiled DML.

7. End Users : The users of the database system can be classified in the following

groups, depending on their degree of expertise or the mode of their interactions with the

DBMS.

 1. Naïve users

 2. Online Users

 3. Application Programmers

 4. Database administrator

 i)Naïve User: Naive users who need not have aware of the present of the database

system or any other system.. A user of an automatic teller falls under this category. The

user is instructed through each step of a transaction; he or she responds by pressing a

coded key or entering a numeric value. The operations that can be performed by this calls

of users are very limited and affect a precise portion of the database; in case of the user of

the automatic teller machine, only one or more of her or his own accounts. Other such

naive users are where the type and range of response is always indicated to the user.

Thus, a very competent database designer could be allowed to use a particular database

system only as a naive user.

ii)Online users: There are users who may communicate with the database directly

via an online terminal or indirectly via a user interface and application program. These

users are aware of the presence of the database system and may have acquired a certain

amount of expertise in the limited interaction they are permitted with the database

through the intermediate application program. The more sophisticated of these users may

also use a data manipulation language to manipulate the database directly. On-line users

can also be naive users requiring help such as menus.

 iii)Application Users: Professional programmers who are responsible for

developing application programs or user interfaces utilized by the naive and online users

fall into this category. The application programs could be written in a general purpose

programming language such as Assembler C, COBOL, FORTRAN, PASCAL, or PL/I

and include the commands required to manipulate the database.

 iv)Database Administrator: Centralized control of the database is exerted by a

person or group of persons under the supervision of a high level administrator. This

person or group is referred to as the database administrator (DBA). They are users who

are the most familiar with the database and are responsible for creating, modifying and

maintaining its three levels.

 The DBA us the custodian of the data and controls the database structure.

The DBA administers the three levels of the database and in consultation with the overall

user community, sets up the definition of the global view or conceptual level of the

database. The DBA further specifies the external view of the various users and

applications and is responsible for definition and implementation of the internal level,

including the storage structure and access methods to be used for the optimum

performance of the DBMS.

F) Write short note on :-

(i) DBMS user:

(ii) DBMS facilities

Ans: DBMS user :

 1. Application programmers or Ordinary users

2. End users

 3. Database Administrator (DBA)

 4. System Analyst

1. Application programmers or Ordinary users: These users write application programs to

interact with the database. Application programs can be written in some programming language

such a COBOL, PL/I, C++, JAVA or some higher level fourth generation language. Such

programs access the database by issuing the appropriate request, typically a SQL statement to

DBMS.

2. End Users: End users are the users, who use the applications developed. End users need not

know about the working, database design, the access mechanism etc. They just use the system to

get their task done. End users are of two types:

a) Direct users b) Indirect users

a) Direct users: Direct users are the users who se the computer, database system directly, by

following instructions provided in the user interface. They interact using the application

programs already developed, for getting the desired result. E.g. People at railway reservation

counters, who directly interact with database.

b) Indirect users: Indirect users are those users, who desire benefit form the work of DBMS

indirectly. They use the outputs generated by the programs, for decision making or any other

purpose. They are just concerned with the output and are not bothered about the programming

part.

3. Database Administrator (DBA): Database Administrator (DBA) is the person which makes

the strategic and policy decisions regarding the data of the enterprise, and who provide the

necessary technical support for implementing these decisions. Therefore, DBA is responsible for

overall control of the system at a technical level. In database environment, the primary resource

is the database itself and the secondary resource is the DBMS and related software administering

these resources is the responsibility of the Database Administrator (DBA).

4. System Analyst: System Analyst determines the requirement of end users, especially naïve

and parametric end users and develops specifications for transactions that meet these

requirements. System Analyst plays a major role in database design, its properties; the structure

prepares the system requirement statement, which involves the feasibility aspect, economic

aspect, technical aspect etc. of the system.

(ii) DBMS facilities

Typically, a DBMS provides the following facilities

 Data Definition Language (DDL)

It allows a database designer to define the database using a Data Definition Language (DDL)

provided for the particular DBMS. The DDL allows the designer to specify the data types and

structures, and the constraints on the data to be stored in the database (see Figure 5.3 on page

60).

 Data Manipulation Language (DML)

It allows users to insert, update, delete and retrieve data from the database through a Data

Manipulation Language (DML). Having a central repository for all data and data descriptions

allows the DML to provide a general enquiry facility to this data, called a query language.

Using a query language, directly or indirectly, enables new lines of enquiry to be constructed and

satisfied quickly. A query language is sufficiently high level to allow non-technical personnel to

use it, easily. The most common query language is the Structured Query Language (SQL –

pronounced ‘S-Q-L’).

 View Mechanism

The DBMS provides a view mechanism that allows each user to have his or her own view of the

database. The DDL is used to define a view that is a subset of the database. For example, a

program to print a list of staff names, their qualifications and subjects that they teach would be

granted a view of the database that included just these data items and excluded all others as

shown in Figure 2.2.

Figure 2.2 Restricting an application’s view of the database

◼ Multiple indexes

Surname First Name Qualification

s

Main

Subject

Address Salary

Granted view

An index is a mechanism for reducing the time taken to find a specific item of data in a database.

A database index works in a similar way to a user of the index in this book. If you want to use

this book to find out about the topic “multiple indexes“ then you have a choice. You could open

this book at the beginning and work your way, line by line, page by page, through the text

looking for the phrase “multiple indexes”. Eventually, your search will be successful on page 19.

Luckily for you, by choosing the phrase “multiple indexes” you only had to search 19 pages, had

you chosen the phrase “solutions to questions” you would not have struck lucky until page 107.

However, there is a much quicker way to search based upon searching the index pages at the

back of this book. Searching the index line by line, page by page for the phrase “multiple

indexes” is much quicker. This index stores the number of the page that we need to visit to read

about “multiple indexes”. So, having found the correct entry in the index we can now turn

directly to the desired page.

An index in a database can store each value of an indexed data item (field), e.g. student

enrolment number, together with the page number in the storage medium where the data

belonging to this value is stored. For example, information stored in a database about a particular

student such as surname, home address, et cetera may be quickly found if an index has been

created that stores every student’s enrolment number and the location of the corresponding

information.

Indexes may also be created on other fields of a student’s record, e.g. surname, address.

However, since some fields such as the surname are unlikely to be unique, the entries in the

index may reference more than one location, just like the entries in the index for this book. An

index on a unique field is known as a primary index whereas an index on a non-unique field is

known as a secondary index.

◼ Indexing Overheads

Indexes have to be constantly kept up to date. When a new data value is added or modified the

corresponding index must be updated. This takes time. This is called an update overhead.

G) Explain three level architecture proposal of DBMS with its disadvantages .

Ans: Objective of three level architecture proposal for DBMS

• All users should be able to access same data.

• A user's view is immune to changes made in other views.

• Users should not need to know physical database storage details.

• DBA should be able to change database storage structures without affecting the users'

views.

• Internal structure of database should be unaffected by changes to physical aspects of

storage.

• DBA should be able to change conceptual structure of database without affecting all

users.

The architecture of a database management system can be broadly divided into three

levels :

a. External level

b. Conceptual level

c. Internal level

Above three points are explain in detail given bellow:-

External Level:

 This is the highest level, one that is closest to the user. It is also called the user view.

The user view is different from the way data is stored in the database. This view

describes only a part of the actual database. Because each user is not concerned with the

entire database, only the part that is relevant to the user is visible. For example, end users

and application programmers get different external views.

 Each user uses a language to carry out database operations. The application

programmer uses either a conventional third-generation language, such as COBOL or C,

or a fourth-generation language specific to the DBMS, such as visual FoxPro or MS

Access.

The end user uses a query language to access data from the database. A query language is

a combination of three subordinate language :

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 Data Control Language (DCL)

The data definition language defines and declares the database object, while the data

manipulation language performs operations on these objects. The data control language is

used to control the user’s access to database objects.

Conceptual Level: - This level comes between the external and the internal levels.

The conceptual level represents the entire database as a whole, and is used by the DBA.

This level is the view of the data “as it really is”. The user’s view of the data is

constrained by the language that they are using. At the conceptual level, the data is

viewed without any of these constraints

Internal Level: - This level deals with the physical storage of data, and is the

lowest level of the architecture. The internal level describes the physical sequence of the

stored records

 So that objective of three level of architecture proposal for DBMS are suitable

explain in above.

Disadvantages of DBMS:-

Although there are many advantages of DBMS, the DBMS may also have some minor

disadvantages. These are:

• Cost of Hardware and Software

A processor with high speed of data processing and memory of large size is required to run the

DBMS software. It means that you have to up grade the hardware used for file-based system.

Similarly, DBMS software is also very costly,.

• Cost of Data Conversion

When a computer file-based system is replaced with database system, the data stored into data

file must be converted to database file. It is very difficult and costly method to convert data of

data file into database. You have to hire database system designers along with application

programmers. Alternatively, you have to take the services of some software house. So a lot of

money has to be paid for developing software.

• Cost of Staff Training

Most database management system are often complex systems so the training for users to use the

DBMS is required. Training is required at all levels, including programming, application

development, and database administration. The organization has to be paid a lot of amount for

the training of staff to run the DBMS.

• Appointing Technical Staff

The trained technical persons such as database administrator, application programmers, data

entry operations etc. are required to handle the DBMS. You have to pay handsome salaries to

these persons. Therefore, the system cost increases.

• Database Damage

In most of the organization, all data is integrated into a single database. If database is damaged

due to electric failure or database is corrupted on the storage media, the your valuable data may

be lost forever.

H) Explain the following term :-

(i) Data Independence

Data independence is the type of data transparency that matters for a centralized DBMS. It

refers to the immunity of user applicationsto make changes in the definition and organization of

data.

Physical data independence deals with hiding the details of the storage structure from user

applications. The application should not be involved with these issues, since there is no

difference in the operation carried out against the data.

The data independence and operation independence together gives the feature of data abstraction.

There are two levels of data independence.

Logical data independence:

- the capacity to change the conceptual schema without

having to change external schema or application prgms

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Data_abstraction

ex: Employee (E#, Name, Address, Salary)

A view including only E# and Name is not affected by

changes in any other attributes.

Physical data independence:

- the capacity to change the internal schema without

having to change the conceptual (or external) schema

- internal schema may change to improve the performance

(e.g., creating additional access structure)

- easier to achieve logical data independence, because

application programs are dependent on logical structures

(ii) Instance and Schema :

Schema:

A schema is plan of the database that give the names of the entities and attributes and the

relationship among them. A schema includes the definition of the database name, the record type

and the components that make up the records. Alternatively, it is defined as a framework into

which the values of the data items are fitted. The values fitted into the frame-work changes

regularly but the format of schema remains the same e.g., consider the database consisting of

three files ITEM, CUSTOMER and SALES. The data structure diagram for this schema is shown

in following figure:

Generally, a schema can be partitioned into two categories, i.e., (i) Logical schema and

(ii) Physical schema.

i) The logical schema is concerned with exploiting the data structures offered by the DBMS so

that the schema becomes understandable to the computer. It is important as programs use it to

construct applications.

ii) The physical schema is concerned with the manner in which the conceptual database get

represented in the computer as a stored database. It is hidden behind the logical schema and can

usually be modified without affecting the application programs.

The DBMS's provide DDL and DSDL to specify both the logical and physical schema.

http://techforum4u.com/attachment.php?s=610ec589d01353c68aad02addcc393ff&attachmentid=1173&d=1348828648

Instances:

The data in the database at a particular moment of time is called an instance or a database

state. In a given instance, each schema construct has its own current set of instances. Many

instances or database states can be constructed to correspond to a particular database

schema. Everytime we update (i.e., insert, delete or modify) the value of a data item in a

record, one state of the database changes into another state.

The following figure shows an instance of the ITEM relation in a database schema.

ITEM

ITEM-ID ITEM_DESC ITEM_COST

1111A Nutt 3

1112A Bolt 5

1113A Belt 100

1144B Screw 2

 (I)What are the advantages and disadvantages of a DBMS ?

Ans:-DBMS: A database is a collection of non-redundant data which can be shared by different

application systems stresses the importance of multiple applications, data sharing the spatial

database

becomes a common resource for an agency implies separation of physical storage from use of the

data by an application program, i.e. program/data independence the user or programmer or

application specialist need not know the details of how the data are stored such details are

"transparent to the user" changes can be made to data without affecting other components of the

system. e.g. change format of data items (real to integer, arithmetic operations) change file

structure (reorganize data internally or change mode of access) relocate from one device to

another, e.g. from optical to magnetic storage, from tape to disk

Advantages:

Control of data redundancy.

Data consistency

More information from the same amount of data.

Sharing of data.

Improved data integrity.

Improved security.

Enforcement of standards.

8. Economy of scale.

1. Controlling Data Redundancy - In the conventional file processing system,

Every user group maintains its own files for handling its data files. This may lead to

• Duplication of same data in different files.

• Wastage of storage space, since duplicated data is stored.

• Errors may be generated due to pupation of the same data in different files.

• Time in entering data again and again is wasted.

• Computer Resources are needlessly used.

• It is very difficult to combine information

2. Elimination of Inconsistency - In the file processing system information is duplicated

throughout the system. So changes made in one file may be necessary be carried over to another

file. This may lead to inconsistent data. So we need to remove this duplication of data in multiple

file to eliminate inconsistency.

3 Better service to the users - A DBMS is often used to provide better services to the users.

In conventional system, availability of information is often poor, since it normally difficult to

obtain information that the existing systems were not designed for. Once several conventional

systems are combined to form one centralized database, the availability of information and its

update ness is likely to improve since the data can now be shared and DBMS makes it easy to

respond to anticipated information requests.

Centralizing the data in the database also means that user can obtain new and combined

information easily that would have been impossible to obtain otherwise. Also use of DBMS

should allow users that don't know programming to interact with the data more easily, unlike file

processing system where the programmer may need to write new programs to meet every new

demand.

4. Flexibility of the System is improved - Since changes are often necessary to the contents

of the data stored in any system, these changes are made more easily in a centralized database

than in a conventional system. Applications programs need not to be changed on changing the

data in the database.

5. Integrity can be improved - Since data of the organization using database approach is

centralized and would be used by a number of users at a time. It is essential to enforce integrity-

constraints.

In the conventional systems because the data is duplicated in multiple files so updating or

changes may sometimes lead to entry of incorrect data in some files where it exists.

6. Standards can be enforced - Since all access to the database must be through DBMS, so

standards are easier to enforce. Standards may relate to the naming of data, format of data,

structure of the data etc. Standardizing stored data formats is usually desirable for the purpose of

data interchange or migration between systems.

7. Security can be improved - In conventional systems, applications are developed in an

adhoc/temporary manner. Often different system of an organization would access different

components of the operational data, in such an environment enforcing security can be quiet

difficult. Setting up of a database makes it easier to enforce security restrictions since data is now

centralized. It is easier to control who has access to what parts of the database. Different checks

can be established for each type of access (retrieve, modify, delete etc.) to each piece of

information in the database.

8. Organization's requirement can be identified - All organizations have sections and

departments and each of these units often consider the work of their unit as the most important

and therefore consider their need as the most important. Once a database has been setup with

centralized control, it will be necessary to identify organization's requirement and to balance the

needs of the competating units. So it may become necessary to ignore some requests for

information if they conflict with higher priority need of the organization.

It is the responsibility of the DBA (Database Administrator) to structure the database system to

provide the overall service that is best for an organization.

9. Overall cost of developing and maintaining systems is lower - It is much easier to

respond to unanticipated requests when data is centralized in a database than when it is stored in

a conventional file system. Although the initial cost of setting up of a database can be large, one

normal expects the overall cost of setting up of a database, developing and maintaining

application programs to be far lower than for similar service using conventional systems, Since

the productivity of programmers can be higher in using non-procedural languages that have been

developed with DBMS than using procedural languages.

10. Data Model must be developed - Perhaps the most important advantage of setting up of

database system is the requirement that an overall data model for an organization be build. In

conventional systems, it is more likely that files will be designed as per need of particular

applications demand. The overall view is often not considered. Building an overall view of an

organization's data is usual cost effective in the long terms.

11. Provides backup and Recovery - Centralizing a database provides the schemes such as

recovery and backups from the failures including disk crash, power failures, software errors

which may help the database to recover from the inconsistent state to the state that existed prior

to the occurrence of the failure, though methods are very complex.

Disadvantages:

Complexity

Size

Cost of DBMS

Additional hardware costs

Cost of conversion

Performance

Higher impact of a failure

 (J)Explain the following in detail ?

 (1)Abstraction and data integration

 (2)Metadata

Ans:- 1) Abstraction and data integration:

i)Data Abstraction

Major aim of a DBMS is to provide users with an abstract view of data

Hides certain details of how the data are stored & maintained DBMS must retrieve data

efficiently Need for efficiency has led designers to use complex data structures to represent the

data in the database Most DB users are not computer trained, developers hide complexity

through several levels of abstraction to simplify user’s interaction with the systems

 Physical or Internal Level

Lowest level of abstraction describes how data are actually stored

Describes complex low-level data structures in detail

Logical or Conceptual Level

Describes what data are stored in the DB & what relationships exist among those data Describes

the entire DB in terms of relatively simpler structures

View or External Level

Highest level of abstraction which describes only a part of the DB

User’s view of the DB. This level describes that part of the DB that is relevant to each user

ii)Data Integration involves combining data residing in different sources and providing users

with a unified view of these data. This process becomes significant in a variety of situations both

commercial (when two similar companies need to merge their databases) and scientific

(combining research results from different bioinformatics repositories, for example). Data

integration appears with increasing frequency as the volume and the need to share existing data

explodes.

 The problem of providing

Uniform (sources transparent to users)

Access to (query)

Multiple (even 2 is a problem)

Autonomous (not affect the behavior of sources)

Heterogeneous (different data models, schemas)

Structured (at least semi structured)

Data sources (not only databases)

2)Metadata:-Metadata (meta data, or sometimes metainformation) is "data about data", of any

sort in any media. An item of metadata may describe an individual datum, or content item, or a

collection of data including multiple content items and hierarchical levels, for example a

database schema. In data processing, metadata is definitional data that provides information

about or documentation of other data managed within an application or environment

 Metadata is structured data which describes the characteristics of a resource. It

shares many similar characteristics to the cataloguing that takes place in libraries, museums and

archives. The term "meta" derives from the Greek word denoting a nature of a higher order or

more fundamental kind. A metadata record consists of a number of pre-defined elements

representing specific attributes of a resource, and each element can have one or more values.

 Each metadata schema will usually have the following characteristics:

a limited number of elements

the name of each element

 the meaning of each element

(K)Define association between files. Name and discuss the type of association between files.

?

Ans:-files-A collection of related records. For example, a file might contain data about

ROBCOR Company’s vendors; or, a file might contain the records for the students currently

enrolled at Gigantic University. a collection of pages, each containing a collection of records.

Must support:

insert/delete/modify record

read a particular record (specified using record id)

scan all records (possibly with some conditions on the records to be retrieved)

 Association between files-

1. One-to-one association (1:1 < ----- >)

2. One-to-many association (1:M < ------ >>)

3. Many-to-many association (M:M <<--- >>)

4. Many-to-one association (M:1 << ---->)

5. One-to-one conditional association (<----o--- >)

(d)What are the components of a Database Managment System ?

Ans:- Database Management System:- A database is a collection of non-redundant data

which can be shared by different application systems, A shared collection of logically

related data and its data description, defined once but used simultaneously by many

applications and users

◼ stresses the importance of multiple applications, data sharing

◼ the spatial database becomes a common resource for an agency

 fig.Database Management System

 Hardware

◼ Can range from a PC to a network of computers.

 Software

◼ DBMS, operating system, network software (if necessary) and also the

application programs.

 Data

◼ Used by the organization and a description of this data called the schema.

 Procedures

◼ Instructions and rules that should be applied to the design and use of the

database and DBMS.

 People

It includes various types users.

Components of DBMS

DDL Compiler

Data Manager

File Manager

Disk Manager

Query Processor

Telecommunication System

Data Files

Data Dictionary

Access Aids

1. DDL Compiler - Data Description Language compiler processes schema definitions

specified in the DDL. It includes metadata information such as the name of the files, data

items, storage details of each file, mapping information and constraints etc.

2. DML Compiler and Query optimizer - The DML commands such as insert, update,

delete, retrieve from the application program are sent to the DML compiler for

compilation into object code for database access. The object code is then optimized in the

best way to execute a query by the query optimizer and then send to the data manager.

3. Data Manager - The Data Manager is the central software component of the DBMS

also knows as Database Control System.

 The Main Functions Of Data Manager Are: –

Convert operations in user's Queries coming from the application programs or

combination of DML Compiler and Query optimizer which is known as Query Processor

from user's logical view to physical file system.

• Controls DBMS information access that is stored on disk.

• It also controls handling buffers in main memory.

• It also enforces constraints to maintain consistency and integrity of the data.

• It also synchronizes the simultaneous operations performed by the concurrent

users.

• It also controls the backup and recovery operations.

4. Data Dictionary - Data Dictionary is a repository of description of data in the

database. It contains information about

24. Data - names of the tables, names of attributes of each table, length of

attributes, and number of rows in each table.

25. Relationships between database transactions and data items referenced by

them which is useful in determining which transactions are affected when certain

data definitions are changed.

26. Constraints on data i.e. range of values permitted.

27. Detailed information on physical database design such as storage

structure, access paths, files and record sizes.

28. Access Authorization - is the Description of database users their

responsibilities and their access rights.

29. Usage statistics such as frequency of query and transactions.

30. Data dictionary is used to actually control the data integrity, database

operation and accuracy. It may be used as a important part of the DBMS.

31. Importance of Data Dictionary -

32. Data Dictionary is necessary in the databases due to following reasons:

33. It improves the control of DBA over the information system and user's

understanding of use of the system.

34. • It helps in document ting the database design process by storing

documentation of the result of every design phase and design decisions.

35. It helps in searching the views on the database definitions of those views.

36. It provides great assistance in producing a report of which data elements

(i.e. data values) are used in all the programs.

37. It promotes data independence i.e. by addition or modifications of

structures in the database application program are not effected.

5. Data Files - It contains the data portion of the database.

6. Compiled DML - The DML complier converts the high level Queries into low level

file access commands known as compiled DML.

7. End Users : The users of the database system can be classified in the following

groups, depending on their degree of expertise or the mode of their interactions with the

DBMS.

 1. Naïve users

 2. Online Users

 3. Application Programmers

 4. Database administrator

 i) Naïve User: Naive users who need not have aware of the present of the

database system or any other system.. A user of an automatic teller falls under this

category. The user is instructed through each step of a transaction; he or she responds by

pressing a coded key or entering a numeric value. The operations that can be performed

by this calls of users are very limited and affect a precise portion of the database; in case

of the user of the automatic teller machine, only one or more of her or his own accounts.

Other such naive users are where the type and range of response is always indicated to

the user. Thus, a very competent database designer could be allowed to use a particular

database system only as a naive user.

 ii) Online users: There are users who may communicate with the database

directly via an online terminal or indirectly via a user interface and application program.

These users are aware of the presence of the database system and may have acquired a

certain amount of expertise in the limited interaction they are permitted with the database

through the intermediate application program. The more sophisticated of these users may

also use a data manipulation language to manipulate the database directly. On-line users

can also be naive users requiring help such as menus.

 iii) Application Users: Professional programmers who are responsible for

developing application programs or user interfaces utilized by the naive and online users

fall into this category. The application programs could be written in a general purpose

programming language such as Assembler C, COBOL, FORTRAN, PASCAL, or PL/I

and include the commands required to manipulate the database.

 iv) Database Administrator: Centralized control of the database is

exerted by a person or group of persons under the supervision of a high level

administrator. This person or group is referred to as the database administrator (DBA).

They are users who are the most familiar with the database and are responsible for

creating, modifying and maintaining its three levels.

 The DBA us the custodian of the data and controls the database structure.

The DBA administers the three levels of the database and in consultation with the overall

user community, sets up the definition of the global view or conceptual level of the

database. The DBA further specifies the external view of the various users and

applications and is responsible for definition and implementation of the internal level,

including the storage structure and access methods to be used for the optimum

performance of the DBMS.

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Information Technology

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: DBMS

Semester: I UNIT: II

UNIT 2:

Unit -2

Data Models – Introduction, Data Association(Entities, Attributes, and Association,

Relationship among entities, representation of association and relationships), Data Model

Classification –(Approaches to the relational model, Hierarchical model, and Network Model

with an example).Entity – Relationship model, Concepts of file organization – Sequential Files,

index Sequential Files, Direct Files, Secondary Key retrieval.

(A) Explain ER model with suitable example.

Ans: It is a “top-down” approach

This data model allows us to describe how data is used in a real-world enterprise

an iterative process A team-oriented process, with all business managers (or

designates) involved should validate with a “bottom-up” approach Has three primary

components: entity, relationship, attributes

Many notation methods, Chen was the first to become established.

The building blocks of E-R model are entities, relationships and attributes

Entity: An entity may be defined as a thing which is recognized as being capable of an

independent existence and which can be uniquely identified. An entity is an abstraction from the

complexities of some domain. When we speak of an entity we normally speak of some aspect of

the real world which can be distinguished from other aspects of the real world. An entity may be

a physical object such as a house or a car, an event such as a house sale or a car service, or a

concept such as a customer transaction or order.. An entity-type is a category. An entity, strictly

speaking, is an instance of a given entity-type. There are usually many instances of an entity-

type. Because the term entity-type is somewhat cumbersome, most people tend to use the term

entity as a synonym for this term.

Attributes: It is a Characteristic of an entity. Student’s (entity) attributes: student ID, student

name, address, etc

Attributes are of various types:

• Simple/Single Attributes

• Composite Attributes

• Multivalued attributes

• Derived attributes

Relationship: Relationship captures how two or more entities are related to one another.

Relationships can be thought of as verbs, linking two or more nouns. Examples: an owns

relationship between a company and a computer, a supervises relationship between an employee

and a department, a performs relationship between an artist and a song, a proved relationship

between a mathematician and a theorem. Relationships are represented as diamonds, connected

by lines to each of the entities in the relationship. Types of relationships are as follows:

◼ One to many 1<------- M

◼ Many to one M------→1

◼ Many to many M------M

Symbols and their meanings

• Rectangles represent entity sets.

• Diamonds represent relationship sets.

• Lines link attributes to entity sets and entity sets to relationship sets.

• Ellipses represent attributes

• Double ellipses represent Multivalued attributes.

• Dashed ellipses denote derived attributes.

• Underline indicates primary key attributes

Example:

Given Entity Customer with attributes: customer_id(primary key), name(first_name,

last_name, middle_name), phone_number, date_of_birth, address(city,state,zip_code,street),

Street(Street_name,street_number,apartment_number)

 B) Differentiate between sequential file and Indexed sequential files

C) Illustrate the construction of secondrery key retrieval with a suitable example .

 Ans: In sequential File, Index Sequential file and Direct File we have considered the

retrieval and update of data based on primary key.

 (i)We can retrieve and update data based on secondary key, called as secondary key

retrieval.

 (ii)In secondary key retrieval , there are multiple records satisfying a given key value.

(iii)For e.g. if we search a student file based on the attribute “stud_name”, we can get the set

of records which satisfy the given value.

(D)Define the following terms :-

Ans:Specialization : pecialization is opposite to Generalization. It is a top-down approach in

which one higher level entity can be broken down into two lower level entity. In specialization,

some higher level entities may not have lower-level entity sets at all.

Association : Association is a relationship between two objects. In other words, association

defines the multiplicity between objects. You may be aware of one-to-one, one-to-many, many-

to-one, many-to-many all these words define an association between objects. Aggregation is a

special form of association. Composition is a special form of aggregation.

Example: A Student and a Faculty are having an association.

(i)

Relationship : The relational model (RM) for database management is an approach to managing

data using a structure and language consistent with first-order predicate logic, first described in

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/First-order_logic

1969 by Edgar F. Codd,[1][2] where all data is represented in terms of tuples, grouped into

relations. A database organized in terms of the relational model is a relational database.

Diagram of an example database according to the relational model[3]

In the relational model, related records are linked together with a "key".

The purpose of the relational model is to provide a declarative method for specifying data and

queries: users directly state what information the database contains and what information they

want from it, and let the database management system software take care of describing data

structures for storing the data and retrieval procedures for answering queries.

Most relational databases use the SQL data definition and query language; these systems

implement what can be regarded as an engineering approximation to the relational model. A

table in an SQL database schema corresponds to a predicate variable; the contents of a table to a

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Relational_model#cite_note-1
https://en.wikipedia.org/wiki/Relational_model#cite_note-codd1970-2
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Relation_%28database%29
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_model#cite_note-USDT01-3
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/File:Relational_Model.svg
https://en.wikipedia.org/wiki/File:Relational_key.png

relation; key constraints, other constraints, and SQL queries correspond to predicates. However,

SQL databases deviate from the relational model in many details, and Codd fiercely argued

against deviations that compromise the original principles.

 Aggregation : Aggregration is a process when relation between two entity is treated as a single

entity. Here the relation between Center and Course, is acting as an Entity in relation with

Visitor.

https://en.wikipedia.org/wiki/Relational_model#SQL_and_the_relational_model

 (D)Define entity set.What is the difference between strong and weak entity set? Explain

the technique used to convert any weak entity set into a strong entity set

Ans:- Entity:-Anything (such as a person, place, thing, or event) about which data are to be

collected and stored

Could be physical objects (customer, product, student, etc.) or abstraction (enrollment, flight

route, order, etc.)

Entity set = collection of similar entities.

Similar to a class in object-oriented languages.

Attribute = property of (the entities of) an entity set.

Attributes are simple values, e.g. integers or character strings, not structs, sets, etc.

Example:-

Entity : Employee

Attributes: Emp_id, Ename, Salary, Dept, Desig

A file is a collection of identical record type occurrence pertaining to an entity set and is labeled

to identify the entity set.

Emp_id Ename Salary Dept Desig

101 Sam 10000 Sales Manager

102 Allen 15000 Accounting Project Leader

Difference Between Strong and weak entity set

Strong Entity :-We use a column for each attribute of the set. Each row in the table corresponds

to one entity of the entity set. For the entity set Account, in table We can add, delete and modify

row. A row of a table will be an n-tuple where n is the number of attributes. Actually, the table

contains a subset of the set of all posible row. We refer to the set of all posible row as the

Cartesian product of the sets of all attribute values. We may denote this as

 D1 x D2 or xi
2 Di

For the account table, where D1 and D2 denote the set of all account number and all account

balances, respectively. In general, for a table of n columns, we may denote the Cartesian of D1,

D2, …….., Dn by

 xi=1
n Di

Weak Entity:- For a weak entity set, we add columns to the table corresponding to the primery

key of the strong entity set on which the weak set is dependent. For example, the weak entity set

Transaction has three attributes: transaction#, date and Money. The primery key of Account is

account#.

(E)Explain Different types of Data Model with example?

Ans:-Data Model: A data model is a mechanism that provides this abstraction for database

applications. Data modeling is used for representing entities of interest and their relationships in

the database. It allows the conceptualization of the association between various entities and their

attributes

From user’s viewpoint a DB is a collection of data that models a certain portion of the reality

The logic abstraction used to present data to the user defines a data model, more precisely:

A data model is a collection of concepts used to describe data, their associations and the

constraints that these data have to satisfy

Types of Data Model:

Data Models can be classified as

File based Systems or Primitive Models

Traditional data models

Hierarchical data model

Network data model

Relational data model

Semantic data models

Hirarichical Database Model

Logically represented by an upside down tree

Each parent can have many children

Each child has only one parent

Netwark Database Model

Each record can have multiple parents

Composed of sets

Each set has owner record and member record

Member may have several owners

Retational Database Model:-

Perceived by user as a collection of tables for data storage

Tables are a series of row/column intersections

Tables related by sharing common entity characteristics

Example:-

(F)Explain the different types of file organizations

Ans:-Types of file Organisation

 1)Sequential File

Index-Sequential Files

Direct Files,

Secondary Key retrieval.

Sequential File Organization

1. A sequential file is designed for efficient processing of records in sorted order on some

search key.

o Records are chained together by pointers to permit fast retrieval in search key

order.

o Pointer points to next record in order.

o Records are stored physically in search key order (or as close to this as possible).

o This minimizes number of block accesses.

o Figure 10.15 shows an example, with bname as the search key.

2. It is difficult to maintain physical sequential order as records are inserted and deleted.

o Deletion can be managed with the pointer chains.

o Insertion poses problems if no space where new record should go.

o If space, use it, else put new record in an overflow block.

o Adjust pointers accordingly.

o Figure 10.16 shows the previous example after an insertion.

o Problem: we now have some records out of physical sequential order.

o If very few records in overflow blocks, this will work well.

o If order is lost, reorganize the file.

o Reorganizations are expensive and done when system load is low.

3. If insertions rarely occur, we could keep the file in physically sorted order and reorganize

when insertion occurs. In this case, the pointer fields are no longer required.

The Sequential File

Fixed format used for records

Records are the same length

All fields the same (order and length)

Field names and lengths are attributes of the file

One field is the key filed

Uniquely identifies the record

Records are stored in key sequence

The Sequential File

New records are placed in a log file or transaction file

Batch update is performed to merge the log file with the master file

ii) Index-Sequential Files

Ans: Indexed Sequential File

Index provides a lookup capability to quickly reach the vicinity of the desired

record, Contains key field and a pointer to the main file, Indexed is searched to

find highest key value that is equal or less than the desired key value, Search

continues in the main file at the location indicated by the pointer

 Indexed Sequential File

New records are added to an overflow file

Record in main file that precedes it is updated to contain a pointer to the new

record. The overflow is merged with the main file during a batch update. Multiple

indexes for the same key field can be set up to increase efficiency

Indexed File Uses multiple indexes for different key fields

May contain an exhaustive index that contains one entry for every record in the

main file. May contain a partial index

--

Direct Files:- This organization allows only direct method to store and access records on the

disk. The shortcoming of index schema is that an index must be accessed and read to find

records. This, in itself, can become a bottleneck. Since two trips are needed to disk to access

a record, one to read the index and another to access the record in a file. Maintaining a good

index is an issue, it is addressed very well in B-tree organization

 This direct file organization is used in reservation system for railways, airlines, hotels and

car rentals where very high response time is required. Data is organized hierarchically on a

disk, which is schematically shown below.

Cylinder index:

 –––––––––––––––––––––––––––––––––

 Cylinder Highest Key Value

 –––––––––––––––––––––––––––––––––

 1 70

 2 90

 3 110

 –––––––––––––––––––––––––––––––––

Track index:

 Cylinder 1 Cylinder 2 Cylinder 2

Track Highest Key Value Track Highest Key Value Track Highest Key

value

Secondary Key retrieval.

1 75

2 80

3 95

1 20

2 50

3 70

1 98

2 105

3 110

G)What are the different types of data model ? Explain E-R models in detail.

Ans: Data model : A data model is a conceptual representation of the data structures that are

required by a database. The data structures include the data objects, the associations between

data objects, and the rules which govern operations on the objects. As the name implies, the data

model focuses on what data is required and how it should be organized rather than what

operations will be performed on the data. To use a common analogy, the data model is equivalent

to an architect's building plans.

A data model is independent of hardware or software constraints. Rather than try to represent the

data as a database would see it, the data model focuses on representing the data as the user sees it

in the "real world". It serves as a bridge between the concepts that make up real-world events and

processes and the physical representation of those concepts in a databas

.

High-level (conceptual) data models:

- use concepts such as entities, attributes, relationships

- object-based models: ER model, OO model

Representational (implementation) data models:

- most frequently used in commercial DBMSs

- record-based models: relational, hierarchical, network

Low-level (physical) data models:

- to describe the details of how data is stored

- captures aspects of database system implementation:

record structures (fixed/variable length) and ordering,

access paths (key indexing), etc.

A data model is a conceptual representation of the data structures that are required by a database.

The data structures include the data objects, the associations between data objects, and the rules

which govern operations on the objects. As the name implies, the data model focuses on what

data is required and how it should be organized rather than what operations will be performed on

the data. To use a common analogy, the data model is equivalent to an architect's building plans.

A data model is independent of hardware or software constraints. Rather than try to represent the

data as a database would see it, the data model focuses on representing the data as the user sees it

in the "real world". It serves as a bridge between the concepts that make up real-world events and

processes and the physical representation of those concepts in a database.

H) Explain the following terms:-

 (i) Identifying relationship

• An identifying relationship is when the existence of a row in a child table depends on a

row in a parent table. This may be confusing because it's common practice these days to

create a pseudokey for a child table, but not make the foreign key to the parent part of the

child's primary key. Formally, the "right" way to do this is to make the foreign key part of

the child's primary key. But the logical relationship is that the child cannot exist without

the parent.

Example: A Person has one or more phone numbers. If they had just one phone number,

we could simply store it in a column of Person. Since we want to support multiple phone

numbers, we make a second table PhoneNumbers, whose primary key includes

the person_id referencing the Person table.

We may think of the phone number(s) as belonging to a person, even though they are

modeled as attributes of a separate table. This is a strong clue that this is an identifying

relationship (even if we don't literally include person_id in the primary key

of PhoneNumbers).

 (ii) Discriminator : In distributed computing, a discriminator is a typed tag field present

in OMG IDL discriminated union type and value definitions that determines which union

member is selected in the current union instance.[1][2] Unlike in some conventional programming

languages offering support for unions, discriminator in IDL is not identical to selected field

name. Here is an example of IDL union type definition:

union Register switch (char)

{

 case 'a':

 case 'b': short AX;

 case 'c': long EAX;

 default: octet AL;

};

Effective value of the Register type may contain AX as selected field, but discriminator value

may be either 'a' or 'b' and it is stored in memory separately. Therefore, IDL logically separates

information about currently selected field name and union effective value from information

about current discriminator value. In the example above, discriminator value may be anything of

the following: 'a', 'b', 'c', as well as all other characters belonging to the IDL char type, since the

default branch specified in the example Register type allows use of the remaining characters as

well.

https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Object_Management_Group
https://en.wikipedia.org/wiki/Interface_description_language
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Discriminator#cite_note-1
https://en.wikipedia.org/wiki/Discriminator#cite_note-2

 (iii) Repeating group : Any attribute that can have multiple values associated with a

single instance of some entity. For example, a book might have multiple authors.

Such a "-to-many" relationship might be represented in an unnormalised relational database as

multiple author columns in the book table or a single author(s) column containing a string which

was a list of authors. Converting this to "first normal form" is the first step in database

normalisation. Each author of the book would appear in a separate row along with the book's

primary key. Later nomalisation stages would move the book-author relationship into a separate

table to avoid repeating other book attibutes (e.g. title, publisher) for each author.

 (iv) Binary relationship : A binary relationship defines the relation between two entities.

They can be:

one-to-one: for each value in the first entity, there is one value in the second entity

one-to-many: for each value in the first entity, there are multiple values in the second entity

many-to-many: there can be many values in the first entity for many values in the second entity

Basically, these are descriptions of how you're going to define your relationships and structures

within a relational storage database. One-to-one and on-to-many are usually defined by a foreign

key. Many-to-many requires a mapping or interim table to allow for the multiple connections.

(I) Explain Index sequential file.

Indexed Sequential Files:

Each record of a file has a key field which uniquely identifies that record.

An index consists of keys and addresses (physical disc locations).

An indexed sequential file is a sequential file (i.e. sorted into order of a key field) which

has an index.

A full index to a file is one in which there is an entry for every record.

Indexed sequential files are important for applications where data needs to be

accessed.....

• sequentially

• randomly using the index.

An indexed sequential file allows fast access to a specific record.

Example: A company may store details about its employees as an indexed sequential

file. Sometimes the file is accessed....

• sequentially. For example when the whole of the file is processed to produce

payslips at the end of the month.

http://www.dictionary.com/browse/attribute
http://www.dictionary.com/browse/entity
http://www.dictionary.com/browse/relational--database
http://www.dictionary.com/browse/database-normalisation
http://www.dictionary.com/browse/database-normalisation
http://www.dictionary.com/browse/row
http://www.dictionary.com/browse/primary-key

• randomly. Maybe an employee changes address, or a female employee gets

married and changes her surname.

An indexed sequential file can only be stored on a random access device

eg magnetic disc, CD.

(J) Explain in detail Direct file organization with extendable hashing.

Ans: A bucket in a hash file is unit of storage (typically a disk block) that can hold one or more

records.

The hash function, h, is a function from the set of all search-keys, K, to the set of all

bucket addresses, B.

Insertion, deletion, and lookup are done in constant time.

Direct file organization provides the fastest direct access to records. When using direct access

methods, records do not have to be arranged in any particular sequence on storage media.

Characteristics of the direct access method include:

1. Computers must keep track of the storage location of each record using a variety of direct

organization methods so that data can be retrieved when needed.

2. New transactions' data do not have to be sorted.

3. Processing that requires immediate responses or updating is easily performed.

Direct files are organized so as to facilitate access to records and to ensure their efficient storage.

A tradeoff between these two requirements generally exists: if rapid access is required, more

storage is required to make it possible.

Extendible hashing: is a type of hash system which treats a hash as a bit string, and uses

a trie for bucket lookup.[1] Because of the hierarchical nature of the system, re-hashing is an

incremental operation (done one bucket at a time, as needed). This means that time-sensitive

applications are less affected by table growth than by standard full-table rehashes.

 The efficiency of static hashing declines as the file grows.

 Overflow pages increase search time.

 One solution would be to use a range of hash functions based on a bit value and

double the number of buckets (and the function range) whenever an overflow

page is needed.

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Trie
http://en.wikipedia.org/wiki/Extendible_hashing#cite_note-1

 Such a reorganization is expensive.

 Is it possible to make local changes?

 Use a directory of pointers to buckets.

 Double the directory size when required.

 Only split the pages that have overflowed.

 The directory need only consist of an array of pointers to pages so is relatively

compact.

 The array index represents the value computed by the hash function.

 At any time the array size is determined by how many bits of the hash result are

being used.

 Usually the last d (least significant) bits are used.

 (K)Define entity set.What is the difference between strong and weak entity set? Explain

the technique used to convert any weak entity set into a strong entity set

Ans:- Entity:-Anything (such as a person, place, thing, or event) about which data are to be

collected and stored

Could be physical objects (customer, product, student, etc.) or abstraction (enrollment, flight

route, order, etc.)

Entity set = collection of similar entities.

Similar to a class in object-oriented languages.

Attribute = property of (the entities of) an entity set.

Attributes are simple values, e.g. integers or character strings, not structs, sets, etc.

Example:-

Entity : Employee

Attributes: Emp_id, Ename, Salary, Dept, Desig

A file is a collection of identical record type occurrence pertaining to an entity set and is labeled

to identify the entity set.

Emp_id Ename Salary Dept Desig

101 Sam 10000 Sales Manager

102 Allen 15000 Accounting Project Leader

Difference Between Strong and weak entity set

Strong Entity :-We use a column for each attribute of the set. Each row in the table corresponds

to one entity of the entity set. For the entity set Account, in table We can add, delete and modify

row. A row of a table will be an n-tuple where n is the number of attributes. Actually, the table

contains a subset of the set of all posible row. We refer to the set of all posible row as the

Cartesian product of the sets of all attribute values. We may denote this as

 D1 x D2 or xi
2 Di

For the account table, where D1 and D2 denote the set of all account number and all account

balances, respectively. In general, for a table of n columns, we may denote the Cartesian of D1,

D2, …….., Dn by

 xi=1
n Di

Weak Entity:- For a weak entity set, we add columns to the table corresponding to the primery

key of the strong entity set on which the weak set is dependent. For example, the weak entity set

Transaction has three attributes: transaction#, date and Money. The primery key of Account is

account#.

(L)Explain Different types of Data Model with example?

Ans:-Data Model: A data model is a mechanism that provides this abstraction for database

applications. Data modeling is used for representing entities of interest and their relationships in

the database. It allows the conceptualization of the association between various entities and their

attributes

From user’s viewpoint a DB is a collection of data that models a certain portion of the reality

The logic abstraction used to present data to the user defines a data model, more precisely:

A data model is a collection of concepts used to describe data, their associations and the

constraints that these data have to satisfy

Types of Data Model:

Data Models can be classified as

File based Systems or Primitive Models

Traditional data models

Hierarchical data model

Network data model

Relational data model

Semantic data models

Hirarichical Database Model

Logically represented by an upside down tree

Each parent can have many children

Each child has only one parent

Netwark Database Model

Each record can have multiple parents

Composed of sets

Each set has owner record and member record

Member may have several owners

Retational Database Model:-

Perceived by user as a collection of tables for data storage

Tables are a series of row/column intersections

Tables related by sharing common entity characteristics

Example:-

(M)Explain the different types of file organizations

Ans:-Types of file Organisation

 Sequential File

Index-Sequential Files

Direct Files,

Secondary Key retrieval.

Sequential File Organization

1. A sequential file is designed for efficient processing of records in sorted order on some

search key.

o Records are chained together by pointers to permit fast retrieval in search key

order.

o Pointer points to next record in order.

o Records are stored physically in search key order (or as close to this as possible).

o This minimizes number of block accesses.

o Figure 10.15 shows an example, with bname as the search key.

2. It is difficult to maintain physical sequential order as records are inserted and deleted.

o Deletion can be managed with the pointer chains.

o Insertion poses problems if no space where new record should go.

o If space, use it, else put new record in an overflow block.

o Adjust pointers accordingly.

o Figure 10.16 shows the previous example after an insertion.

o Problem: we now have some records out of physical sequential order.

o If very few records in overflow blocks, this will work well.

o If order is lost, reorganize the file.

o Reorganizations are expensive and done when system load is low.

3. If insertions rarely occur, we could keep the file in physically sorted order and reorganize

when insertion occurs. In this case, the pointer fields are no longer required.

The Sequential File

Fixed format used for records

Records are the same length

All fields the same (order and length)

Field names and lengths are attributes of the file

One field is the key filed

Uniquely identifies the record

Records are stored in key sequence

The Sequential File

New records are placed in a log file or transaction file

Batch update is performed to merge the log file with the master file

ii) Index-Sequential Files

Ans: Indexed Sequential File

Index provides a lookup capability to quickly reach the vicinity of the desired

record, Contains key field and a pointer to the main file, Indexed is searched to

find highest key value that is equal or less than the desired key value, Search

continues in the main file at the location indicated by the pointer

 Indexed Sequential File

New records are added to an overflow file

Record in main file that precedes it is updated to contain a pointer to the new

record. The overflow is merged with the main file during a batch update. Multiple

indexes for the same key field can be set up to increase efficiency

Indexed File Uses multiple indexes for different key fields

May contain an exhaustive index that contains one entry for every record in the

main file. May contain a partial index

--

Direct Files:- This organization allows only direct method to store and access records on the

disk. The shortcoming of index schema is that an index must be accessed and read to find

records. This, in itself, can become a bottleneck. Since two trips are needed to disk to access

a record, one to read the index and another to access the record in a file. Maintaining a good

index is an issue, it is addressed very well in B-tree organization

 This direct file organization is used in reservation system for railways, airlines, hotels and

car rentals where very high response time is required. Data is organized hierarchically on a

disk, which is schematically shown below.

Cylinder index:

 –––––––––––––––––––––––––––––––––

 Cylinder Highest Key Value

 –––––––––––––––––––––––––––––––––

 1 70

 2 90

 3 110

 –––––––––––––––––––––––––––––––––

Track index:

 Cylinder 1 Cylinder 2 Cylinder 2

Track Highest Key Value Track Highest Key Value Track Highest Key

value

Secondary Key retrieval.

Que No.2.d)

(d)Illustratrate the Construction of secondary key retrivel with a sutable example.

Ans:-

1 75

2 80

3 95

1 20

2 50

3 70

1 98

2 105

3 110

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Information Technology

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: DBMS

Semester: I UNIT: III

UNIT 3: Syllabus

Unit -3

The Relational Model –Introduction, Relationla Database : Attributes and domains, tuples,

Relations and their schemas, relational representation, Keys, relationship, relational operations,

Integrity rules. Relational Algebra – Basic operations, Relational Algebra queries, Relational

Calculus: tuple calculus, domain Calculus. Relational Database Manipulations : Introduction,

SQL, Data Manipulation in SQL, Quel, Data Manipulations in Quel, QBE , Data Manipulations

in QBE.

A) Define the following :-

(i) Domain

Definition: The domain of a database attribute is the set of all allowable values that attribute

may assume.

Examples:

A field for gender may have the domain {male, female, unknown} where those three values are

the only permitted entries in that column.

In data management and database analysis, a data domain refers to all the unique values which

a data element may contain. The rule for determining the domain boundary may be as simple as

a data type with an enumerated list of values.[1]

For example, a database table that has information about people, with one record per person,

might have a "gender" column. This gender column might be declared as a string data type, and

allowed to have one of two known code values: "M" for male, "F" for female—and NULL for

http://en.wikipedia.org/wiki/Data_management
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data_element
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Enumeration
http://en.wikipedia.org/wiki/Data_domain#cite_note-1
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Gender
http://en.wikipedia.org/wiki/Column_(database)
http://en.wikipedia.org/wiki/Data_type#Strings
http://en.wikipedia.org/wiki/Code_(metadata)
http://en.wikipedia.org/wiki/Null_(SQL)

records where gender is unknown or not applicable (or arguably "U" for unknown as a sentinel

value). The data domain for the gender column is: "M", "F".

In a normalized data model, the reference domain is typically specified in a reference table.

Following the previous example, a Gender reference table would have exactly two records, one

per allowed value—excluding NULL. Reference tables are formally related to other tables in a

database by the use of foreign keys.

Less simple domain boundary rules, if database-enforced, may be implemented through a check

constraint or, in more complex cases, in a database trigger. For example, a column requiring

positive numeric values may have a check constraint declaring that the values must be greater

than zero.

This definition combines the concepts of domain as an area over which control is exercised and

the mathematical idea of a set of values of an independent variable for which a function is

defined.

(ii) Degree and cardinality

The degree of relationship (also known as cardinality) is the number of occurrences in one

entity which are associated (or linked) to the number of occurrences in another.

There are three degrees of relationship, known as:

1. one-to-one (1:1)

2. one-to-many (1:M)

3. many-to-many (M:N)

The latter one is correct, it is M:N and not M:M.

One-to-one (1:1)

This is where one occurrence of an entity relates to only one occurrence in another entity.A one-

to-one relationship rarely exists in practice, but it can. However, you may consider combining

them into one entity.

For example, an employee is allocated a company car, which can only be driven by that

employee.

Therefore, there is a one-to-one relationship between employee and company car.

http://en.wikipedia.org/wiki/Sentinel_value
http://en.wikipedia.org/wiki/Sentinel_value
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Master_data_management
http://en.wikipedia.org/wiki/Reference_table
http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Check_constraint
http://en.wikipedia.org/wiki/Check_constraint
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Function_(mathematics)

One-to-Many (1:M)

Is where one occurrence in an entity relates to many occurrences in another entity.For example,

taking the employee and department entities shown on the previous page, an employee works in

one department but a department has many employees.

Therefore, there is a one-to-many relationship between department and employee.

Many-to-Many (M:N)

This is where many occurrences in an entity relate to many occurrences in another entity.

The normalisation process discussed earlier would prevent any such relationships but the

definition is included here for completeness.

As with one-to-one relationships, many-to-many relationships rarely exist. Normally they occur

because an entity has been missed.

For example, an employee may work on several projects at the same time and a project has a

team of many employees.

Therefore, there is a many-to-many relationship between employee and project.

(iii) Integrity Rules

Integrity Rules are imperative to a good database design. Most RDBMS have

these rules automatically, but it is safer to just make sure that the rules are

already applied in the design. There are two types of integrity mentioned in

integrity rules, entity and reference. Two additional rules that aren't

necessarily included in integrity rules but are pertinent to database designs

are business rules and domain rules.

Entity integrity exists when each primary key within a table has a value that

is unique. this ensures that each row is uniquely identified by the primary

key.One requirement for entity integrity is that a primary key cannot have a

null value. The purpose of this integrity is to have each row to have a unique

identity, and foreign key values can properly reference primary key values.

 Integrity rules are needed to inform the DBMS about certain constraints in the

real world.

 Specific integrity rules apply to one specific database.

Example: part weights must be greater than zero.

 General integrity rules apply to all databases.

Two general rules will be discussed to deal with: primary keys and foreign keys.

(iv) Theta join .

Theta Join:

In theta join we apply the condition on input relation(s) and then only those

selected

rows are used in the cross product to

be merged and included in the output. It means

that in normal cross product all the rows of one relation are mapped/merged

with all

the rows of second relation, but here only selected rows of

a relation are made cross

product with second relation. It is denoted as unde

IfR and S are two relations then is the condition, which is applied for selectoperation on one relat

ion and then only selected rows are cross product with all therows of second relation. For Examp

le there are two relations ofFACULTY andCOURSE, now wewill first apply select operation on

the FACULTY relation forselection certain specific rows then these rows will have across produ

ct withCOURSE relation, so this is the difference in between cross product and theta join.We

will now see first both the relation their different attributes and then finally thecross product after

 carrying out select operation on relation.From this example the difference in between cross prod

uct and theta join.

B) What are view ? How they are managed ? Discuss the constrains on updating views.

Ans:A view is a "virtual table" in the database whose contents are

defined by a query.

The tables of a database define the structure andorganization of its data. However, SQL

also lets you look at thestored data in other ways by defining alternative views of the

data.

A view is a SQL query that is permanently stored in the database

and assigned a name. The results of the stored query are "visible"

through the view, and SQL lets you access these query results as if

they were, in fact, a "real" table in the database.

Views are an important part of SQL, for several reasons:

• Views let you tailor the appearance of a database so that different

users see it from different perspectives.

• Views let you restrict access to data, allowing different users to

see only certain rows or certain columns of a table.

• Views simplify database access by presenting the structure of the

stored data in the way that is most natural for each user.

(a)Explain the following fundamental operations in the relational algebra:-

 (i) Select

 (ii) Project

 (iii) Union

 (iv) Set Difference

Ans:- Selection() Selects a subset of rows from relation.

Projection() Deletes unwanted columns from relation.

Set-difference() Tuples in relation 1, but not in relation 2.

Union () Tuples in relation 1 and in relation 2.

(i) Selection: <condition(s)> (<relation>)

 Picks tuples from the relation

 Selects rows that satisfy selection condition.

 No duplicates in result! (Why?)

 Schema of result identical to schema of (only) input relation.

 Result relation can be the input for another relational algebra operation! (Operator

composition.)

Projection: <attribute-list> (<relation>)

 Picks columns from the relation

 Unary operation

 Denoted by uppercase pi Π.

 Returns a relation with only the specified attributes.

 Example: Πloan-number, amount (loan) lists all of the loan numbers and the amounts.

 Deletes attributes that are not in projection list.

 Schema of result contains exactly the fields in the projection list, with the same names

that they had in the (only) input relation.

 Projection operator has to eliminate duplicates! (Why??)

 Note: real systems typically don’t do duplicate elimination unless the user

explicitly asks for it. (Why not?)

Union: (<relation>) U (<relation>)

 New relation contains all tuples from both relations, duplicate tuples eliminated.

 Denoted, as in set theory, by U.

 Binary operation

 Results in a relation with all of the tuples that appear in either or both of the argument

relations.

 Unions must be between compatible relations

 Both relations must have the same number of attributes.

 Domains of the ith attribute of the first and the ith attribute of the second must be the

same for all i.

 All of these operations take two input relations, which must be union-compatible:

 Same number of fields.

 `Corresponding’ fields have the same type.

 What is the schema of result?

Set Difference: R – S

 Produces a relation with tuples that are in R but NOT in S.

 Denoted by -

 Binary operation

 R – S produces all tuples in R but not in S

 Relations must be compatible under the same conditions as the union operation.

(C)What is Referential Integrity ?How is it represented in the ER Model ? Explain the

Refrential Integrity Clauses in SQL.

Ans:-Defination: Referential integrity is a database concept that ensures that relationships

between tables remain consistent. When one table has a foreign key to another table, the concept

of referential integrity states that you may not add a record to the table that contains the foreign

key unless there is a corresponding record in the linked table. It also includes the techniques

known as cascading update and cascading delete, which ensure that changes made to the linked

table are reflected in the primary table.

 Referential integrity :

 It is specified between two relations.

 It is used to maintain consistency among tuples of the two relations.

 It states that a tuple in one relation that refers to another relation must refer to an

existing tuple in that relation.

 The foreign key is a concept used to define the referential integrity constraint.

Referential integrity is the relational property that each foreign key value in a table exists as a

primary key in the referenced table.

 Referential integrity relationships are defined with SQL FOREIGN KEY and

PRIMARY KEY clauses in the CREATE TABLE statement and are automatically maintained

both during load, update, and insert operations to a referencing table and during delete operations

from a referenced table

(D)Explain Tuple relational calculus and its data manupulation facilities.

 Ans:- Relational Calculus

 Relational calculus query specifies what is to be retrieved rather than how to retrieve it.

 No description of how to evaluate a query.

 In first-order logic (or predicate calculus), predicate is a truth-valued function

with arguments.

 When we substitute values for the arguments, function yields an expression,

called a proposition, which can be either true or false.

 Relational Calculus

 If predicate contains a variable (e.g. ‘x is a member of staff’), there must be a range for x.

 When we substitute some values of this range for x, proposition may be true; for

other values, it may be false.

 When applied to databases, relational calculus has forms: tuple and domain.

 Tuple Relational Calculus

 Interested in finding tuples for which a predicate is true. Based on use of tuple variables.

 Tuple variable is a variable that ‘ranges over’ a named relation: i.e., variable

whose only permitted values are tuples of the relation.

 Specify range of a tuple variable S as the Staff relation as:

 Staff(S)

 To find set of all tuples S such that P(S) is true:

 {S | P(S)}

 Tuple Relational Calculus - Example

 To find details of all staff earning more than $10,000:

 {S | Staff(S) S.salary > 10000}

 To find a particular attribute, such as salary, write:

 {S.salary | Staff(S) S.salary > 10000}

 Tuple Relational Calculus

 Can use two quantifiers to tell how many instances the predicate applies to:

 Existential quantifier $ (‘there exists’)

 Universal quantifier " (‘for all’)

 Tuple variables qualified by " or $ are called bound variables, otherwise called

free variables.

 Tuple Relational Calculus

 Existential quantifier used in formulae that must be true for at least one instance, such as:

 Staff(S) Ù ($B)(Branch(B) Ù

 (B.branchNo = S.branchNo) Ù B.city = ‘London’)

 Means ‘There exists a Branch tuple with same branchNo as the branchNo of the current

Staff tuple, S, and is located in London’.

 Tuple Relational Calculus

 Universal quantifier is used in statements about every instance, such as:

 ("B) (B.city ‘Paris’)

 Means ‘For all Branch tuples, the address is not in Paris’.

 Can also use ~($B) (B.city = ‘Paris’) which means ‘There are no branches with an

address in Paris’.

 Tuple Relational Calculus

 Formulae should be unambiguous and make sense.

 A (well-formed) formula is made out of atoms:

 R(Si), where Si is a tuple variable and R is a relation

 Si.a1 q Sj.a2

 Si.a1 q c

 Can recursively build up formulae from atoms:

 An atom is a formula

 If F1 and F2 are formulae, so are their conjunction, F1 Ù F2; disjunction,

F1 Ú F2; and negation, ~F1

 If F is a formula with free variable X, then ($X)(F) and ("X)(F) are also

formulae.

 Example - Tuple Relational Calculus

a) List the names of all managers who earn more than $25,000.

{S.fName, S.lName | Staff(S)

 S.position = ‘Manager’ S.salary > 25000}

b) List the staff who manage properties for rent in Glasgow.

{S | Staff(S) ($P) (PropertyForRent(P) (P.staffNo = S.staffNo) Ù P.city = ‘Glasgow’)}

 Tuple Relational Calculus

 Expressions can generate an infinite set. For example:

{S | ~Staff(S)}

 To avoid this, add restriction that all values in result must be values in the domain

of the expression.

 Data Manipulations in SQL

 Select, Update, Delete, Insert Statement

 Basic Data retrieval

 Condition Specification

 Arithmetic and Aggregate operators

 SQL Join: Multiple Table Queries

 Set Manipulation

 Any, In, Contains, All, Not In, Not Contains, Exists, Union, Minus, Intersect

 Categorization

 Updates

 Creating Tables

 Empty tables are constructed using the CREATE TABLE statement.

 Data must be entered later using INSERT.

CREATE TABLE S (SNO CHAR(5),

 SNAME CHAR(20),

 STATUS DECIMAL(3),

 CITY CHAR(15),

 PRIMARY KEY (SNO))

 Creating Tables

 A table name and unique column names must be specified.

 Columns which are defined as primary keys will never have two rows with the same key

value.

 Primary key may consist of more than one column (values unique in combination)

called composite key.

 Creating Tables

CREATE TABLE SP (SNO CHAR(5),

 PNO CHAR(5),

 QTY DECIMAL(5),

 PRIMARY KEY (SNO,PNO),

 FOREIGN KEY (SNO) REFERENCES S,

 FOREIGN KEY (PNO) REFERENCES P)

 Foreign keys refer to other tables.

 Any key in SP.SNO must also appear in S.SNO and any key in SP.PNO must

appear in P.PNO - a shipment cannot exist unless the supplier and part also exist.

 Data Manipulation

 There are four basic SQL data manipulation operations.

 SELECT - retrieves data

 INSERT - add a new row

 UPDATE - change values in existing records

 DELETE - remove row(s)

 SELECT

 SELECT has the general form

SELECT-FROM-WHERE.

 The result is another (new) table.

 SELECT

SELECT DISTINCT P.COLOUR, P.CITY

 FROM P

 WHERE P.WEIGHT > 10

 AND P.CITY <> 'Paris'

results in the table,

COLOUR CITY

 Red London

 Blue Rome

[Red London] - eliminated

 because of

 DISTINCT

 statement which

 removes multiple copies of rows

 SELECT

 DISTINCT - no duplicate rows.

 No WHERE - all rows of FROM table are returned.

 SELECT * is short for select the entire row (all columns).

 INSERT

INSERT

 INTO SP (SNO, PNO, QTY)

 VALUES ('S4', 'P1', 1000)

 Row added to Table SP.

 UPDATE

UPDATE S

 SET STATUS = 2 * S.STATUS

 WHERE S.CITY = 'London'

 Status doubled for suppliers in London (S1 and S4)

DELETE

DELETE

 FROM P

 WHERE P.WEIGHT > 15

 Rows deleted from P where WEIGHT > 15 (P2 and P3)

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Information Technology

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: DBMS

Semester: I UNIT: IV

UNIT 4: Syllabus

Unit -4 Relational Database Design - Relational Schema, Relational Design, Functional dependency,

Normalization, First-Second-Third Normal Forms, Relation with more than one Candidate Key, Good

and Bad Decompositions, Multivalued Dependency, Fourth normal Form, Fifth Normal Form. Network

Data Model: The Architecture of DBTG 5 .stem, Schema & Subschema, and DBTG Data Manipulation

Facility. Hierarchical Data Model: The tree Concept, Architecture of an IMS System, Data

Manipulation.

(A) What is join dependency ? Discuss 5NF .

Ans: Join Dependencies (JD)

A join dependency can be described as follows:

1. If a table can be decomposed into three or more smaller tables, it must be capable of being joined

again on common keys to form the original table

A table is in fifth normal form (5NF) or Projection-Join Normal Form (PJNF) if it is in 4NF and it cannot

have a lossless decomposition into any number of smaller tables

Another way of expressing this is: and each join dependency is a consequence of the candidate keys.

It can also be expressed as: there are no pair wise cyclical dependencies in the primary key

comprised of three or more attributes.

• Anomalies can occur in relations in 4NF if the primary key has three or more fields.

• 5NF is based on the concept of join dependence - if a relation cannot be decomposed any further

then it is in 5NF.

• Pair wise cyclical dependency means that:

• You always need to know two values (pair wise).

• For any one you must know the other two (cyclical).

http://www.tonymarston.net/php-mysql/database-design.html#keys#keys
http://www.tonymarston.net/php-mysql/database-design.html#join.dependency#join.dependency

Example: Buying(buyer, vendor, item)

This is used to track buyers, what they buy, and from whom they buy.

Take the following sample data:

buyer vendor Item

Sally Liz Claiborne Blouses

Mary Liz Claiborne Blouses

Sally Jordach Jeans

Mary Jordach Jeans

Sally Jordach Sneakers

The question is, what do you do if Claiborne starts to sell Jeans? How many records must you create to

record this fact?

The problem is there are pairwise cyclical dependencies in the primary key. That is, in order to determine

the item you must know the buyer and vendor, and to determine the vendor you must know the buyer and

the item, and finally to know the buyer you must know the vendor and the item. The solution is to break

this one table into three tables; Buyer-Vendor, Buyer-Item, and Vendor-Item.

(B) Explain the architecture of an IMS System.

Ans: Information Management system (IMS) is an IBM program product that is designed to support

both batch and online application programs.

Host Language

+

DL/I

Host Language

+

DL/I

PCB PCB

DBD DBD DBD DBD DBD DBD ….

IMS

Control

program

PCB PCB

* User interface

PSB-B PSB-A

Application A Application B

Conceptual View

The conceptual view consists of collection of physical database. The “physical” is somewhat

misleading in this context, since the user does not see such a database exactly as it is stored; indeed,

IMS provides a fairely high degree of insulation of the user from the storage structure. Each physical

database is defined by a database description (DBD). The mapping of the physical database to storage

is also DBD’s corresponds to the conceptual schema plus the associated conceptual/internal mapping

definition.

DBD (Database Description): Each physical databse is defined, together with its mapping to

storage, by a databse description (DBD). The source form of the DBD is written using a special

System/370 Assembler Language macro statements. Once written the DBD is assembled and the

object form is stored in a system library, from which it may be extracted when required by the IMS

control program.

All names of DBD’s in IMS are limited to a maximum length of eight characters.

Example:

1. DBD NAME:EDUCPDBD

2. SEGM NAME=COURSE,BYTES=256

3. FILED NAME=(COURSE#,SEQ),BYTES=3,START=1

4. FIELD NAME=TITLE, BYTES=33,START=4

5. FIELD NAME=DESCRIPN,BYETS=220,START=37

6. SEGM NAME=PREREQ,PARENT=COURSE,BYTES=36

7. FILED NAME=(COURSE#,SEQ),BYTES=3,START=1

8. FIELD NAME=TITLE, BYTES=33,START=4

9. SEGM NAME=OFFERING,PARENT=COURSE,BYTES=20

10. FILED NAME=(DATE,SEQ,M),BYTES=6,START=1

11. FIELD NAME=LOCATION, BYTES=12,START=7

12. FIELD NAME=FORMAT,BYETS=2,START=19

13. SEGM NAME=TEACHER,PARENT=OFFERING,BYTES=24

14. FIELD NAME=(EMP#,SEQ), BYTES=6,START=1

15. FIELD NAME=NAME,BYETS=18,START=7

16. SEGM NAME=STUDENT,PARENT=OFFERING,BYTES=25

17. FILED NAME=(EMP#,SEQ),BYTES=6,START=1

18. FIELD NAME=NAME, BYTES=18,START=7

19. FIELD NAME=GRADE,BYTES=1,START=25

External View:

The user does not operate directly at the physical database level but rather on an “external view” of

the data. A particular user’s external view consists of a collection of “logical databases”, where each

logical database is a subset of the corresponding physical database. Each logical database is defined

by means of a program communication block (PCB). The set of all PCB’s for one user, corresponding

to the external schema plus the associated mapping definition, is called program specification block

(PSB).

PCB: Program Communication BLOCK: Each logical Database is defined by a program

communication block (PCB). The PCB includes a specification of the mapping between the LDB and

the corresponding PDB.

PSB: Program Specification BLOCK: The set of all PCB’s for a given user forms that user’s

program specification block (PSB)

 Example:

1. PCB TYPE=DB,DBNAME=EDUCPDBD,KEYLEN=15

2. SENSEG NAME=COURSE,PROCOPT=G

3. SENSEG NAME=OFFERING,PARENT=COURSE,PROCOPT=G

4. SENSEG NAME=STUDENT,PARENT=OFFERING,PROCOPT=G

PROCOPT: The PROCOPT entry specifies the types of operation that the user will be permitting to

perform on this segment. In this example the entry is G (“get”), indicating retrieval only. Other

possible values are I(“insert”), R(“replace”), and D(“delete”)

Internal View

The users are ordinary application programmers, using a host language from which the IMS data

manipulation language DL/I- “Data Language/I”- may be invoked by subroutine call. End-users are

supported via user-written on-line application programs. IMS does not provide an integrated query

language.

(C) Explain the following :-

(i) Functional dependency.

Functional Dependency: The value of one attribute (the determinant)

determines the value of another attribute.

Candidate Key: A possible key.

 Each non-key field is functionally dependent on every candidate key.

No attribute in the key can be deleted without destroying the property of

unique identification

 Main characteristics of functional dependencies used in

normalization:

have a 1:1 relationship between attribute(s) on left and right-hand side of

a dependency; hold for all time; are nontrivial.

Complete set of functional dependencies for a given relation can be very

large.

Important to find an approach that can reduce set to a manageable size.

Need to identify set of functional dependencies (X) for a relation that is

smaller than complete set of functional dependencies (Y) for that relation

and has property that every functional dependency in Y is implied by

functional dependencies in X.

(ii) Multivalued dependency

 No answer

(D) Explain 4 NF with examples.

Ans :Normalization: The process of decomposing unsatisfactory “bad” relations by breaking up

their attributes into smaller relationsThe normal form of a relation refers to the highest normal form

condition that a relation meets and indicates the degree to which it has been normalized.

Normalization is carried out in practice so that the resulting designs are of high quality and meet the

desirable properties.

Normalization in industry pays particular attention to normalization up to 3NF, BCNF, or 4NF.

We will pay particular attention up to 3NF.

The database designers need not normalize to the highest possible normal form.

Formal technique for analyzing a relation based on its primary key and functional dependencies

between its attributes.

Often executed as a series of steps. Each step corresponds to a specific normal form, which has

known properties.

As normalization proceeds, relations become progressively more restricted (stronger) in format and

also less vulnerable to update anomalies.

1. NF2: non-first normal form

2. 1NF: R is in 1NF. iff all domain values are atomic2

3. 2NF: R is in 2. NF. iff R is in 1NF and every nonkey attribute is fully dependent on the key

4. 3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the

key

5. BCNF: R is in BCNF iff every determinant is a candidate key

6. Determinant: an attribute on which some other attribute is fully functionally dependent.

Fourth Normal Form:

Fourth normal form (or 4NF) requires that there are no non-trivial multi-valued dependencies of

attribute sets on something other than a superset of a candidate key. A table is said to be in 4NF if and

only if it is in the BCNF and multi-valued dependencies are functional dependencies. The 4NF

removes unwanted data structures: multi-valued dependencies

There is no Multivalued dependency in the relation

There are Multivalued dependency but the attributes are dependent between themselves

Either of these conditions must hold true in order to be fourth normal form

The relation must also be in BCNF Fourth normal form differs from BCNF only in that it uses

Multivalued dependencies.

E) What are inference axioms ? Explain its significance in Relational Database Design .

Ans: Inference Axioms (A-axioms or Armstrong’s Axioms)

An inference axiom is a rule that states if a relation satisfies certain FDs then it must satisfy certain other

FDs.

F1. Reflexivity X X

F2. Augmentation If (Z W; X Y) then XW YZ

F3. Additivity If { (X Y) (X Z)} then X YZ

F4. Projectivity If (X YZ) then X Y

F5. Transitivity If (X Y) and (Y Z) then (X Z)

F6. Pseudotransitivity If (X Y) and (YZ W) then XZ W

Examples of the use of Inference Axioms

[From Ullman]

1. Consider R = (Street, Zip, City) ; F = {City Street Zip, Zip City}

We want to show: Street Zip Street Zip City

Proof:

1. Zip City – Given

2. Street Zip Street City – Augmentation of (1) by Street

3. City Zip Zip – Given

4. City Street City Street Zip – Augmentation of (3) by City Street

5. Street Zip City Street Zip – Transitivity of (2) and (4)

[From Maier]

1. Let R = (ABCDEGHI) F = {AB E AG J BE I E G GI H}

Show that AB GH is derived by F

1. AB E - Given

2. AB AB – Reflexivity

3. AB B - Projectivity from (2)

4. AB BE – Additivity from (1) and (3)

5. BE I - Given

6. AB I – Transitivity from (4) and (5)

7. E G – Given

8. AB G – Transitivity from (1) and (7)

9. AB GI – Additivity from (6) and (8)

10. GI H – Given

11. AB H – Transitivity from (9) and (10)

12. AB GH – Additivity from (8) and (11)

Significance in Relational Database design: A database structure commonly used in GIS in which

data is stored based on 2 dimensional tables where multiple relationships between data elements

can be defined and established in an ad-hoc manner. elational Database Management System - a

database system made up of files with data elements in two-dimensional array (rows and columns).

This database management system has the capability to recombine data elements to form different

relations resulting in a great flexibility of data usage

A database that is perceived by the user as a collection of twodimensional tables

• Are manipulated a set at a time, rather than a record at a time

• SQL is used to manipulate relational databases Proposed by Dr. Codd in 1970

• The basis for the relational database management system (RDBMS)

• The relational model contains the following components:

• Collection of objects or relations

• Set of operations to act on the relations

• Data integrity for accuracy and consistency

(a) List and explain different types of functional dependency in detail.

Ans: Functional Dependency: The value of one attribute (the determinant) determines the value of

another attribute.

Candidate Key: A possible key.

 Each non-key field is functionally dependent on every candidate key.

No attribute in the key can be deleted without destroying the property of unique identification.

◼ Main concept associated with normalization.

◼ Functional Dependency

❑ Describes relationship between attributes in a relation.

❑ If A and B are attributes of relation R, B is functionally dependent on A (denoted A Ù B),

if each value of A in R is associated with exactly one value of B in R.

◼ Complete set of functional dependencies for a given relation can be very large.

◼ Important to find an approach that can reduce set to a manageable size.

◼ Need to identify set of functional dependencies (X) for a relation that is smaller than complete set

of functional dependencies (Y) for that relation and has property that every functional

dependency in Y is implied by functional dependencies in X.

◼ Set of all functional dependencies implied by a given set of functional dependencies X called

closure of X (written X+).

◼ Set of inference rules, called Armstrong’s axioms, specifies how new functional dependencies

can be inferred from given ones.

◼ Let A, B, and C be subsets of the attributes of relation R. Armstrong’s axioms are as follows:

 1. Reflexivity

If B is a subset of A, then A ® B

2. Augmentation

 If A ® B, then A,C ® B,C

3. Transitivity

 If A ® B and B ® C, then A ® C

◼ Y is functionally dependent on X in R iff for each x Î R.X there is precisely one yÎ R.Y

◼ Y is fully functional dependent on X in R if Y is functional dependent on X and Y is not

functional dependent on any proper subset of X

D)Explain fourth Normal form with suitable example.

Que Normalization: The process of decomposing unsatisfactory “bad” relations by breaking up their

attributes into smaller relations

The normal form of a relation refers to the highest normal form condition that a relation meets and

indicates the degree to which it has been normalized.

Normalization is carried out in practice so that the resulting designs are of high quality and meet the

desirable properties

5 Fourth normal form (or 4NF) requires that there are no non-trivial multi-valued dependencies of

attribute sets on something other than a superset of a candidate key. A table is said to be in 4NF if and

only if it is in the BCNF and multi-valued dependencies are functional dependencies. The 4NF

removes unwanted data structures: multi-valued dependencies

There is no Multivalued dependency in the relation

There are Multivalued dependency but the attributes are dependent between themselves

Either of these conditions must hold true in order to be fourth normal form

The relation must also be in BCNF

Fourth normal form differs from BCNF only in that it uses Multivalued dependencies

The fifth normal form deals with join-dependencies which is a generalizations of the MVD. The aim

of fifth normal form is to have relations that cannot be decomposed further.

 A relation in 5NF cannot be constructed from several smaller relations.

 A relation R satisfies join dependency (R1, R2, ..., Rn) if and only if R is equal to the join of

 R1, R2, ..., Rn where Ri are subsets of the set of attributes of R.

(E)What is Normalization ?Convert any unnormalized relation into 1NF 2NF and 3NF.

◼ Ans: Normalization: The process of decomposing unsatisfactory "bad" relations by breaking up

their attributes into smaller relations

◼ Normalization is carried out in practice so that the resulting designs are of high quality and meet

the desirable properties

◼ Normalization in industry pays particular attention to

normalization up to 3NF, BCNF, or 4NF.

◼ We will pay particular attention up to 3NF.

◼ NF2: non-first normal form

◼ 1NF: R is in 1NF. iff all domain values are atomic2

◼ 2NF: R is in 2. NF. iff R is in 1NF and every nonkey attribute is fully dependent on the key

◼ 3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the key

Unnormalized Form (UNF)

◼ A table that contains one or more repeating groups.

◼ To create an unnormalized table:

◼ transform data from information source (e.g. form) into table format with columns and

rows.

◼ First Normal Form (1NF)

◼ A relation in which intersection of each row and column contains one and only one value.

◼ If a table of data meets the definition of a relation, it is in first normal form

◼ Every relation has a unique name.

◼ Every attribute value is atomic (single-valued).

◼ Every row is unique.

◼ Attributes in tables have unique names.

◼ The order of the columns is irrelevant.

◼ The order of the rows is irrelevant

◼ UNF to 1NF

◼ Nominate an attribute or group of attributes to act as the key for the unnormalized table.

◼ Identify repeating group(s) in unnormalized table which repeats for the key attribute(s).

◼ Remove repeating group by:

❑ entering appropriate data into the empty columns of rows containing repeating data

(‘flattening’ the table).

 Or by

❑ placing repeating data along with copy of the original key attribute(s) into a separate

relation.

◼ Second Normal Form (2NF)

◼ Based on concept of full functional dependency:

❑ A and B are attributes of a relation,

❑ B is fully dependent on A if B is functionally dependent on A but not on any proper

subset of A.

❑ 2NF - A relation that is in 1NF and every non-primary-key attribute is fully functionally

dependent on the primary key.

◼ Second Normal Form (2NF)

◼ 1NF and no partial functional dependencies.

◼ Partial functional dependency: when one or more non-key attributes are functionally dependent

on part of the primary key.

◼ Every non-key attribute must be defined by the entire key, not just by part of the key.

◼ If a relation has a single attribute as its key, then it is automatically in 2NF.

◼ 1NF to 2NF

◼ Identify primary key for the 1NF relation.

◼ Identify functional dependencies in the relation.

◼ If partial dependencies exist on the primary key remove them by placing them in a new relation

along with copy of their determinant.

◼ Third Normal Form (3NF)

◼ 2NF and no transitive dependencies

◼ Transitive dependency: a functional dependency between two or more non-key attributes

Based on concept of transitive dependency:

❑ A, B and C are attributes of a relation such that if A Ù B and B Ù C, then C is transitively

dependent on A through B. (Provided that A is not functionally dependent on B or C).

❑ 3NF - A relation that is in 1NF and 2NF and in which no non-primary-key attribute is

transitively dependent on the primary key.

◼ 2NF to 3NF

◼ Identify the primary key in the 2NF relation.

◼ Identify functional dependencies in the relation.

◼ If transitive dependencies exist on the primary key remove them by placing them in a new

relation along with copy of their determinant.

 (D)Explain the tree concept in Hierarichical Data Model.

And:-

In hierarchical model, data is organized into a tree like structure with each record is having one parent

record and many children. The main drawback of this model is that, it can have only one to many

relationships between nodes.

Sample Hierarchical Model Diagram:

Lets say we have few students and few courses and a course can be assigned to a single student only,

however a student take any number of courses so this relationship becomes one to many.

 Tulsiramji Gaikwad-Patil College of Engineering & Technology

 Department of Information Technology

 Subject Notes

 Academic Session: 2018 – 2019

 Subject: DBMS

Semester: I UNIT: V

UNIT V: Syllabus

Unit –V

Database Operations and Maintenance - Database Administrator (DBA), Database Security,

Integrity And Control (User with Password and Complete/Limited Authorization, Encryption of

Data). Concurrency Control: Problem of Concurrent Access, resource locking, Deadlock.

Database Recovery: Restore, Backward & Forward Recovery. Distributed Database:

Introduction, Data Distribution, Deadlock in Distributed Systems, Security and Protection,

Homogeneous and Heterogeneous Systems. Knowledge Base and Database Systems, Expert

Database Systems, Object Database System.

(A) What are object oriented database systems? What are its features.

 Ans: Object databases are a niche field within the broader DBMS market dominated by

relational database management systems (RDBMS). Object databases have been considered

since the early 1980s and 1990s but they have made little impact on mainstream commercial data

proc

Features of object oriented database systems:

Most object databases also offer some kind of query language, allowing objects to be found by a

more declarative programming approach. It is in the area of object query languages, and the

integration of the query and navigational interfaces, that the biggest differences between

products are found. An attempt at standardization was made by the ODMG with the Object

Query Language, OQL.

Access to data can be faster because joins are often not needed (as in a tabular implementation of

a relational database). This is because an object can be retrieved directly without a search, by

following pointers. (It could, however, be argued that "joining" is a higher-level abstraction of

pointer following.)

Another area of variation between products is in the way that the schema of a database is

defined. A general characteristic, however, is that the programming language and the database

schema use the same type definitions.

Multimedia applications are facilitated because the class methods associated with the data are

responsible for its correct interpretation.

Many object databases, for example VOSS, offer support for versioning. An object can be

viewed as the set of all its versions. Also, object versions can be treated as objects in their own

right. Some object databases also provide systematic support for triggers and constraints which

are the basis of active databases.

The efficiency of such a database is also greatly improved in areas which demand massive

amounts of data about one item. For example, a banking institution could get the user's account

information and provide them efficiently with extensive information such as transactions,

account information entries etc.

--

 B) How database recovery it done? Discuss its different types.

Ans: SQL Server database recovery models give you backup-and-restore flexibility. The

model used will determine how much time and space your backups will take and how great your

risk of data loss will be when a breakdown occurs.

System breakdowns happen all the time even to the best configured systems. This is why you

have to explore the options available in order to prepare for the worst!

SQL server database recovery can be easier achieved if you are running on at least the SQL

server 2000. It has a built in feature known as the database recovery model that controls the

following

• Both the speed and size of your transaction log backups.

• The degree to which you might be at risk of losing committed transactions in the event

of media failure.

Models

There are three types of database recovery models available

• Full Recovery

• Bulk Logged Recovery

• Simple Recovery

Full Recovery:

This is your best guarantee for full data recovery. The SQL Server fully logs all operations, so

every row inserted through a bulk copy program (bcp) or BULK INSERT operation is written in

its entirety to the transaction log. When data files are lost because of media failure the

transaction log can be backed up.

• Database restoration up to any specified time can be achieved after media failure for a

database file has occurred. If your log file is available after the failure, you can

restore up to the last transaction committed.

• Log Marks feature allows you to place reference points in the transaction log that allow

you to recover a log mark.

• Logs CREATE INDEX operations. Recovery from a transaction log backup that

includes index creations is done at a faster pace because the index does not have to

be rebuilt.

BulkLoggedRecoveryModel :

This model allows for recovery in case of media failure and gives you the best performance

using the least log space for certain bulk operations, including BULK INSERT, bcp, CREATE

INDEX, WRITETEXT, and UPDATETEXT.

SimpleRecoveryModel :

It allows for the fastest bulk operations and the simplest backup-and-restore strategy. Under this

model, SQL Server truncates the transaction log at regular intervals, removing committed

transactions. Only full database backups and differential backups are allowed.

C)Describe Deadlocks a Distributed System.

Ans: A deadlock is a condition in a system where a set of processes (or threads) have requests

for resources that can never be satisfied. Essentially, a process cannot proceed because it needs

to obtain a resource held by another process but it itself is holding a resource that the other

process needs. More formally, Coffman defined four conditions have to be met for a deadlock to

occur in a system:

1. Mutual exclusion A resource can be held by at most one process.

2. Hold and wait Processes that already hold resources can wait for another resource.

3. Non-preemption A resource, once granted, cannot be taken away.

4. Circular wait Two or more processes are waiting for resources held by one of the other

processes.

A directed graph model used to record the resource allocation state of a system. This state

consists of n processes, P1 … Pn, and m resources, R1 … $m. In such a graph:

P1 → R1 means that resource R1 is allocated to process P1.

P1 ← R1 means that resource R1 is requested by process P1.

Deadlock is present when the graph has a directed cycles. An example is shown in Figure 1.

Such a graph is called a Wait-For Graph (WFG).

Deadlock in distributed systems

Figure 2. Resource graph on A Figure 3. Resource graph on B

The same conditions for deadlock in uniprocessors apply to distributed systems. Unfortunately,

as in many other aspects of distributed systems, they are harder to detect, avoid, and prevent.

Four strategies can be used to handle deadlock:

http://people.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf

1. ignorance: ignore the problem; assume that a deadlock will never occur. This is a surprisingly

common approach.

2. detection: let a deadlock occur, detect it, and then deal with it by aborting and later restarting a

process that causes deadlock.

3. prevention: make a deadlock impossible by granting requests so that one of the necessary

conditions for deadlock does not hold.

4. avoidance: choose resource allocation carefully so that deadlock will not occur. Resource

requests can be honored as long as the system remains in a safe (non-deadlock) state after

resources are allocated.

The last of these, deadlock avoidance through resource allocation is difficult and requires the

ability to predict precisely the resources that will be needed and the times that they will be

needed. This is difficult and not practical in real systems. The first of these is trivially simple but,

of course, ineffective for actually doing anything about deadlock conditions. We will focus on

the middle two approaches.

In a conventional system, the operating system is the component that is responsible for resource

allocation and is the ideal entity to detect deadlock. Deadlock can be resolved by killing a

process. This, of course, is not a good thing for the process. However, if processes are

transactional in nature, then aborting the transaction is an anticipated operation. Transactions are

designed to withstand being aborted and, as such, it is perfectly reasonable to abort one or more

transactions to break a deadlock. The transaction can be restarted later at a time when, we hope,

it will not create another deadlock.

Centralized deadlock detection

Centralized deadlock detection attempts to imitate the nondistributed algorithm through a central

coordinator. Each machine is responsible for maintaining a resource graph for its processes and

resources. A central coordinator maintains the resource utilization graph for the entire system:

the Global Wait-For Graph. This graph is the union of the individual Wait-For Graphs. If the

coordinator detects a cycle in the global wait-for graph, it aborts one process to break the

deadlock.

In the non-distributed case, all the information on resource usage lives on one system and the

graph may be constructed on that system. In the distributed case, the individual subgraphs have

to be propagated to a central coordinator. A message can be sent each time an arc is added or

deleted. If optimization is needed, a list of added or deleted arcs can be sent periodically to

reduce the overall number of messages sent.

Figure 4. Resource graph on coordinator Figure 5.

False deadlock

Here is an example (from Tanenbaum). Suppose machine A has a process P0, which holds the

resource S and wants resource R, which is held by P1. The local graph on A is shown in Figure 2.

Another machine, machine B, has a process P2, which is holding resource T and wants resource

S. Its local graph is shown in Figure 3. Both of these machines send their graphs to the central

coordinator, which maintains the union (Figure 4).

All is well. There are no cycles and hence no deadlock. Now two events occur. Process

P1 releases resource R and asks machine B for resource T. Two messages are sent to the

coordinator:

message 1 (from machine A): “releasing R”

message 2 (from machine B): “waiting for T”

This should cause no problems (no deadlock). However, if message 2 arrives first, the

coordinator would then construct the graph in Figure 5 and detect a deadlock. Such a condition is

known as false deadlock. A way to fix this is to use Lamport’s algorithm to impose global time

ordering on all machines. Alternatively, if the coordinator suspects deadlock, it can send a

reliable message to every machine asking whether it has any release messages. Each machine

will then respond with either a release message or a negative acknowledgement to acknowledge

receipt of the message.

Distributed deadlock detection

An algorithm for detecting deadlocks in a distributed system was proposed by Chandy, Misra,

and Haas in 1983. Processes request resources from the current holder of that resource. Some

processes may wait for resources, which may be held either locally or remotely. Cross-machine

arcs make looking for cycles, and hence detecting deadlock, difficult. This algorithm avoids the

problem of constructing a Global WFG.

The Chandy-Misra-Haas algorithm works this way: when a process has to wait for a resource,

a probe message is sent to the process holding that resource. The probe message contains three

components: the process ID that blocked, the process ID that is sending the request, and the

destination. Initially, the first two components will be the same. When a process receives the

probe: if the process itself is waiting on a resource, it updates the sending and destination fields

http://www.amazon.com/dp/0132392275/pkorg

of the message and forwards it to the resource holder. If it is waiting on multiple resources, a

message is sent to each process holding the resources. This process continues as long as

processes are waiting for resources. If the originator gets a message and sees its own process

number in the blocked field of the message, it knows that a cycle has been taken and deadlock

exists. In this case, some process (transaction) will have to die. The sender may choose to

commit suicide and abort itself or an election algorithm may be used to determine an alternate

victim (e.g., youngest process, oldest process, …).

Distributed deadlock prevention

An alternative to detecting deadlocks is to design a system so that deadlock is impossible. We

examined the four conditions for deadlock. If we can deny at least one of these conditions then

we will not have deadlock.

Mutual exclusion

To deny this means that we will allow a resource to be held (used) by more than one

process at a time. If a resource can be shared then there is no need for mutual exclusion

and deadlock cannot occur. Too often, however, a process requires mutual exclusion for a

resource because the resource is some object that will be modified by the process.

Hold and wait

Denying this means that processes that hold resources cannot wait for another resource.

This typically implies that a process should grab all of its resources at once. This is not

practical either since we cannot always predict what resources a process will need

throughout its execution.

Non-preemption

A resource, once granted, cannot be taken away. In transactional systems, allowing

preemption means that a transaction can come in and modify data (the resource) that is

being used by another transaction. This differs from mutual exclusion since the access is

not concurrent but the same problem arises of having multiple transactions modify the

same resource. We can support this with optimistic concurrency control algorithms that

will check for out-of-order modifications at commit time and roll back (abort) if there are

potential inconsistencies.

Circular wait

Avoiding circular wait means that we ensure that a cycle of waiting on resources does not

occur. We can do this by enforcing an ordering on granting resources and aborting

transactions or denying requests if an ordering cannot be granted.

One way of avoiding circular wait is to obtain a globally-unique timestamp (e.g., Lamport total

ordering) for every transaction so that no two transactions get the same timestamp. When one

process is about to block waiting for a resource that another process is using, check which of the

two processes has a younger timestamp and give priority to the older process.

If a younger process is using the resource, then the older process (that wants the resource) waits.

If an older process is holding the resource, the younger process (that wants the resource) aborts

itself. This forces the resource utilization graph to be directed from older to younger processes,

making cycles impossible. This algorithm is known as the wait-die algorithm.

D)Explain deadlock detection, prevention and recovery technique

in detail.

Ans:

Deadlock recovery: Some systems facilitate deadlock recovery by implementing checkpointing

and rollback. Checkpointing is saving enough state of a process so that the process can be

restarted at the point in the computation where the checkpoint was taken. Autosaving file edits is

a form of checkpointing. Checkpointing costs depend on the underlying algorithm. Very simple

algorithms (like linear primality testing) can be checkpointed with a few words of data. More

complicated processes may have to save all the process state and memory.

Checkpoints are taken less frequently than deadlock is checked for. If a deadlock is detected,

one or more processes are restarted from their last checkpoint. The process of restarting a process

from a checkpoint is called rollback. The hope is that the resource requests will not interleave

again to produce deadlock.

Deadlock recovery is generally used when deadlocks are rare, and the cost of recovery

(process termination or rollback) is low.

Process checkpointing can also be used to improve reliability (long running computations),

assist in process migration (Sprite, Mach), or reduce startup costs (emacs).

