Tulsiramji Gaikwad-Patil College of Engineering & Technology Department of Master in Computer Application

Subject Notes Academic Session: 2018 – 2019

Subject:DMGT

Semester: II

Either

1.(A) Let A, B and C be finite sets, then prove that : $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$

Solution
We have
$$A \cup B \cup C = \{a, b, c, d, e, g, h, k, m, n\}$$
, $A \cap B = \{a, b, e\}$, $A \cap C = \{b, d, e\}$, $B \cap C = \{b, e, g, h\}$, and $A \cap B \cap C = \{b, e\}$, so $|A| = 5$, $|B| = 5$, $|C| = \{b, d, e\}$, $|A \cup B \cup C| = 10$, $|A \cap B| = 3$, $|A \cap C| = 3$, $|B \cap C| = 4$, and $|A \cap B \cap C| = 2$.
8, $|A \cup B \cup C| = 10$, $|A \cap B| = 3$, $|A \cap C| = 3$, $|B \cap C| = 4$, and $|A \cap B \cap C| = 2$.
Thus $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C| = 5 + 5 + 8 - 3 - 3 - 4 + 2$
or 10, and Theorem 3 is verified.

(B) Prove

 $5 + 10 + 15 + \dots + 5n = 5n(n+1)/2$

for all $n \ge 1$; using Mathematical Induction

Sol== using mathematical inductor $f_{DIM}: \Rightarrow for n = 5$ LHS. = P(I) = 5 for = 5 $R.HS. = P(I) = \left(\frac{5 \times 1(C1 + 1)}{2}\right) = \left(\frac{5 \times 2}{2}\right)$ $= \frac{1}{7} + 5 = 5$ P(I) is true for T = 5Enduction Step. For n=15 $l. H. S. = P(K) = 5xi + 5x2 + 5x3 + 5x4 + \dots + K \cdot n$ $= \left[\frac{Kxn(k+1)}{2}\right]$ $p(1): RHS = \left[\frac{E(n(n+1))}{2}\right]$ · · PCIR) is true - bo n= 19 ---(ii

$$\frac{h_{P} \sigma \rho = k^{n+1}}{\rho c^{n} + D} = L H S = E + 10 + 1S + \dots + 1K + Cle + 1D$$

$$= \left[\frac{K C K + 1D}{2}\right] + C (k + 1D) \left[\frac{K + 1D}{2} \left(\frac{1 + 1D}{2}\right)\right]$$

$$= \frac{C (k + 1D) \left[\frac{K + 1D}{2} \left(\frac{1 + 1D}{2}\right)\right]}{\frac{1}{2}}$$

$$= \frac{C (k + 1D) \left[\frac{1}{2} \left(\frac{1 + 1D}{2}\right)\right]}{\frac{1}{2}}$$

$$= \frac{C (k + 1D) \left[\frac{1}{2} \left(\frac{1 + 1D}{2}\right)\right]}{\frac{1}{2}}$$

$$= \frac{C (k + 1D) \left[\frac{1}{2} \left(\frac{1 + 1D}{2}\right)\right]}{\frac{1}{2}}$$

(c) Prove that : If A, B and C are Boolean matrices of compatible sizes then, (A B) C = A (B C)

Sol== Solution:

Let us assume that

$$A = [a_{ij}] m \times n$$

$$B = [b_{jk}] m \times n$$

$$C = [c_{kl}] m \times n$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

$$i,e \quad (A+B)+C = A+(B+C)$$

Now,

$$\mathbf{A} + \mathbf{B} = [\mathbf{a}_{ij}] \mathbf{m} \mathbf{X} \mathbf{n} + [\mathbf{b}_{jk}] \mathbf{m} \times \mathbf{n}$$

 $= [a_{ij}] + b_{jk}] m \times n$

 $(A + B) + C = [a_{ij} + b_{jk}] m \times n + [c_{kl}] m \times n$

 $= [a_{ij} + b_{jk} + c_{kl}] \mathbf{m} \times \mathbf{n} \qquad (1)$

 $(B + C) = [b_{jk}] m X n + [c_{kl}] m \times n$

= $[b_{jk} + c_{kl}] m \times n$

$$(B + C) + A = [a_{ij}] m \times n + [b_{jk} + c_{kl}] m \times n$$
$$= [a_{ij} + b_{jk} + c_{kl}] m \times n$$

From equation (1) & (2)

We get $(A \lor B) \lor C = A \lor (B \lor C)$

i.e.

 $(A \Theta B) \Theta C = A \Theta (B \Theta C)$

```
(d) Obtain conjunctive normal form of :

\dot{u}(P \lor Q) (P \land Q).

Proof:-
```

 $\begin{aligned} 7(P \lor Q) \leftrightarrow (P \land Q) \\ by R \leftrightarrow S \Leftrightarrow (R \rightarrow S) \land (S \rightarrow R) \\ \Leftrightarrow [7(P \lor Q) \rightarrow (P \land Q)] \land [(P \land Q) \rightarrow 7(P \lor Q)] \\ \Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)] \quad \{P \rightarrow Q \Rightarrow 7P \lor Q \\ \Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)] \quad \{By \text{ Demorgans property } \& 77P \Rightarrow P \\ \Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By \text{ Distributive property} \\ \Leftrightarrow ((P \lor P) \lor Q) \land ((Q \lor Q) \lor P) \land ((7P \lor 7P) \lor 7Q) \land ((7Q \lor 7Q) \lor 7P) \{By \text{ Associative property} \\ \Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \lor P = P \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{By \text{ commulative property} \\ \Leftrightarrow (P \lor Q) \land (7P \lor 7Q) \quad \{P \land P = P \end{cases} \end{aligned}$

(2)

It is the form of product of elementary sum of min terms.

Hence it is form of Principal Conjunction Normal Form.

(c) Obtain Principal Disjunctive Normal Form of $P \rightarrow ((P \rightarrow Q), \land \dot{u} (\dot{u}Q \lor \dot{u} P)).$

$$Sol== \Longrightarrow_{(\mathsf{TP}} \land_{\mathsf{T}}) \lor_{(\mathsf{Q}} \land_{\mathsf{T}}) \qquad \{by \ P \land_{\mathsf{T}=\mathsf{P}} \\ \Longrightarrow_{[\mathsf{TP}} \land_{(\mathsf{Q}} \lor_{\mathsf{TQ}})] \lor_{[\mathsf{Q}} \land_{(\mathsf{P}} \lor_{\mathsf{TP}})] \qquad \{by \ P \lor_{\mathsf{T}=\mathsf{P}} \\ \{by \ P \lor_{\mathsf{T}=\mathsf{T}}\} \end{cases}$$

$\Longrightarrow_{[(Q^{\wedge}P)} \vee_{(Q^{\wedge}P)} \vee_{(Q^{\wedge}P)})$	{by distributive property
$\Rightarrow_{(\mathbf{P}^{\wedge} Q)} \lor_{(\mathbf{Q}^{\wedge} \mathbf{P})} \lor_{(\mathbf{Q}^{\wedge} \mathbf{P})} \lor_{(\mathbf{Q}^{\wedge} \mathbf{P})}$	{by Associative property
$\Longrightarrow_{(\mathbf{P}^{\wedge} Q)} \vee_{(\mathbf{P}^{\wedge} q\mathbf{T})} \vee_{(\mathbf{P}^{\wedge} Q)} \vee_{(\mathbf{P}^{\wedge} q\mathbf{T})}$	{by Commutative property

. It is form of sum of elementary product of min term.

Hence, it is in the form of Principal Disjunction Normal Form.

 $\begin{aligned} 7(P \lor Q) \leftrightarrow (P \land Q) \\ by R \leftrightarrow S \Leftrightarrow (R \to S) \land (S \to R) \\ \Leftrightarrow [7(P \lor Q) \to (P \land Q)] \land [(P \land Q) \to 7(P \lor Q)] \\ \Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)] \quad \{P \to Q \Rightarrow 7P \lor Q \\ \Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)] \quad \{By \text{ Demorgans property } \& 77P \Rightarrow P \\ \Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By \text{ Distributive property} \\ \Leftrightarrow ((P \lor P) \lor Q) \land ((Q \lor Q) \lor P) \land ((7P \lor 7P) \lor 7Q) \land ((7Q \lor 7Q) \lor 7P) \{By \text{ Associative property} \\ \Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \lor P = P \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{By \text{ commulative property} \\ \Leftrightarrow (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \land P = P \end{cases} \end{aligned}$

(b) Find an explicit formula for the sequence defined by $C_n = 6C_{n-1} + 7C_{n-2}$ with initial conditions $C_0 = 2, C_1 = 1.$

Sol== First find sequence for recurrence relation

$$a_n = 4a_{n-1} + 5a_{n-2}$$

For n = 3 $a_3 = 4a_{3-1} + 5a_{3-2}$
= $4a_2 + 5a_1$
= $4(6) + 5(2)$
= $24 + 10$
= 34
For n = 4 $a_4 = 4a_{4-1} + 5a_{4-2}$
= $4a_3 + 5a_2$
= $4(34) + 5(6)$
= 166

For n=5 $a_5 = 4a_{5-1} + 5a_{5-2}$

$$= 4a_4 + 5a_3$$

= 4(166) + 5(34)
=834

∴ Sequence is 2,6,34,166,834----

The recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ is linear homogeneous

Equation of degree 2.

It associated equation is

$$x^2 = 4x + 5$$

Rewriting this as

 $x^2 - 4x - 5 = 0$

 $x^2 - 5x + x - 5 = 0$

(x-5)(x+1)=0

X=5 or x=-1

The roots of the equation is $s_1 = 5$ and $s_2 = -1$

Now, by teorem(i)

We can find value of \boldsymbol{u} and \boldsymbol{v}

From $a_n = us_1^n + vs_2^n$ -----(A)

For n=1

 $a_1 = us_1 + vs_{12}$

2 = u(5) + v(-1)

2 = 5u - v -----(i)

For n = 2

$$a_2 = us_1^n + vs_2^n$$

 $6 = u(5)^2 + v (-1)^2$
 $6 = 25u + v$ ------(ii)

Solving equation (i) and (ii)

5u-v = 2

25u + v = 6

30u = 8

U=8/30

Putting values of u in equation (i)

2 = 5 (8/30) - v

2 = (8/6) - v

2 = 8/6 - 2

2 = 8 - 12/6

V = -4/6

Put value of u_1, v_1, s_2 and s_2 in equation (A)

$$a_n = us_1^n + vs_2^n$$

$$a_n = (8/30) (5)^n + (-2/3) (-1)^n$$

 $a_n = 8/30 (5)^n + -2/3 (-1)^n$

 \therefore Which is required formula.

(a) Define :

(i) Semigroup

(ii) Monoid

(iii) Subsemigroup

(iv) Group Homomorphism.

(i) Semigroup:-

Let S be a non-empty set and * be a binary operation on S. The algebraic system (S, *) is called a semigroup if the operation * is

(1) The operation * is a closed operation on set A.

(2) The operation * is an associative operation.

Or (S, *) is a semigroup if for any x, y, $z \in S$,

Free semigroup:

If * is an associative binary operation, and (A,*) is a semigroup. The semigroup(A,*) is called free semigroup by A.

Ex:

Consider an algebraic system (S,*) where $S = \{1,2,3,5,7,9----\}$ the set of all positive odd integers and * is a binary operation means multiplication. Determine whether (S,*) is a semigroup.

(ii) Monoid:-

Let us consider an algebraic system (M, *), where * is a binary operation on M. Then the system (M, *) is said to be a monoid if it satisfies the following properties:

- (1) The operation * is a closure operation on set A.
- (2) The operation * is an associative operation.
- (3) There exists an identify element w. r. t. The operation *.

Ex:-

Consider an algebra system (N, +), where the set $N = \{0,1,2,3---\}$ the set of natural numbers and + is an addition operation. Determine whether (N,+) is a monoid.

(iii) Subsemigroup:-

Let (S,*) be a semigroup and $T \subseteq S$, if the set T is closed number the operation * then (T,*) is said to be subsemigroups of (S,*).

Ex:

Consider a semigroup (N,+), where N is the sset of all natural number and + is an addition operation.

The algebric system (E,+) is a subsemigroup of (N,+), where E is a set of all +ve even integer.

(iv) Group homomorphism:-

Let (S,*) and (T,*) be two semigroups. An everywhere defined function f: $S \rightarrow T$ is called a homomorphism from (S,*) and (T,*)

If (a * b) = f(a) * f(b)

For all a and b in S.

If f is also onto.

We say that T is a homomorphic image of S.

(b)Let the number of edges of graph G be m. Then G has a Hamiltonian circuit if $m\geq 1/2~(n2-3n+6)$ where n=n0 of vertices.

Sol== partial order set :

Let A is a relation or set A .then relation R is called partial order. If it is reflexive, antisymentric and transitive.

If R is a partial order relation on set A. then set A together with partial order relation R is know as partial orderd set or partial order

set.

Ex. Let Z be a set f integers " \leq " be a relation on Z.

· Reflexive property is satisfied.

$$(\because_{a \leq a} \forall_{a \in z})$$

Let $a, b \in z$

 $a \le b$ and $b \le a _ a=b$

Antisymmentric property is satisfied

 $a \le b \text{ and } b \le c \Rightarrow a \le c$

. Transitive property is satiesfide.

 \therefore " \leq " is a partial oreder relation on Z

Similarly ">>"is also a partial oreder relation on Z.

Chain order set:

If every pair of element in a poset is comparable than poset A is called linear order set .Or set A is chain .

Ex. $A=\{a,b,c\}$

 $a \le c, c \le b$

This order is in linear or chain.

Hence it is called chain or linear orderd.

Lexicographic:

Let A×B is a cartesion product of two sets A &B .we define "<"as follow.

 $(a b) \le (a' b')$ if $a \le a'$ or if a=a' then $b \le b'$

This is used in dictionary.

Hence it is also as dictionary

Ex. Help, help

Help< help

Isomorphism:

Let $(A \leq)$ and $(A' \leq')$ be posets and let f: A \rightarrow A!be a one-to-one correspondence between f: A & A! The function f is called an Isomorphism from A to A'

It for any a, b $\in A$, a $\leq b$

 $\Leftrightarrow f(a) \leq a(b).$

(Proof left)

(c) Let G be the set of all non-zero real numbers and let ab a * b = . Show that (G, *) is an Abelian group.

Sol== To show: (G,*) is an abelian group.

Closure property:

The set G is closed under the operation *.

Since,
$$a*b = \frac{ab}{2}$$
 is a real number.

Hence, belongs to G.

Associative property:

The operation * is associative.

Let a, b, $c \in G$, then

We have

$$(a*b)*c = \left(\frac{ab}{2}\right)*c$$
$$= \frac{(ab)c}{4}$$

 $=\frac{abc}{4}$

Similarly, a* (b*c) * a =
$$\left(\frac{ab}{2}\right)$$

= $\frac{a(bc)}{4}$

(d) Let T be the set of all even integers. Show that the semigroup (z, +) and (T, +) are isomorphic Sol== solu:

Let a and d be any element in G, since R is an equivalence relation $b \in [a]$

If and only if [b] = [a]

Also G/R is a group

Therefore [b] =[a] if and only if

 $[e] = [a^{-1}] [b]$

 $= [a^{-1} b]$

Thus, $b \in [a]$ if and only if

 $H = [e] = [a^{-1} b]$

That is, $b \in [a]$ if and only if

 $a^{-1}b \in H$ or $b \in aH$

This prove that

[a] = aH for every $a \in G$

We can show

Similar that $b \in [a]$ if and only if

H = [e]

 $= [b] [a]^{-1}$

 $= [ba]^{-1}$

This is equivalent to the statement [a] = Ha

Thus, [a] = are isomorphic

Either

1.(A) (a) Let A, B and C be finite sets with
$$|A| = 6$$
, $|B| = 8$, $|C| = 6$, $|A * B * C| = 11$, $|A \rangle B| = 3$, $|A \rangle C| = 2$ and $|B \rangle C| = 5$. Find $|A \rangle B \rangle C|$.

Basic of induction: For n=1

P (1) = LHS = A1∩ B P (1) = LHS = A1∩ B ∴ LHS = RHS A1∩B = A1∩B P (1) is true for n=1 Induction step: For n=k P (k)= LHS = $(\bigcup_{i=1}^{k} Ai) \cap B = \bigcup_{i=1}^{k} (Ai \cap B)$ P (k) = RHS = $\bigcup_{i=1}^{k} (Ai \cap B)$ ∴ p(k) is also true for n=k Similarly for n = k+1

LHS =
$$(\bigcup_{i=1}^{k+1} Ai) \cap B$$

= $(A1 \cup A2 \cup \dots \cup Ak \cup Ak + 1) \cap B$
= $((\bigcup_{i=1}^{k} Ai) \cup Ak + 1) \cap B$
= $((\bigcup_{i=1}^{k} Ai) \cap B) \cup (Ak + 1 \cap B)$ {by distributive property}
= $(\bigcup_{i=1}^{k} (Ai \cap B)) \cup (Ak + 1 \cap B)$

(c) Prove by mathematical induction : 3 $12 + 32 + 52 + \dots + (2n - 1)2 = n(2n + 1)(2n - 1).$ Sol== $a_n = 4a_{n-1} + 5a_{n-2}$ where $a_1 = 2, a_2 = 6$ Soln: First find sequence for recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ For n = 3 $a_3 = 4a_{3-1} + 5a_{3-2}$ $=4a_2+5a_1$ =4(6)+5(2)= 24 + 10= 34 For n = 4 $a_4 = 4a_{4-1} + 5a_{4-2}$ $=4a_3+5a_2$ =4(34)+5(6)= 166 For n=5 $a_5 = 4a_{5-1} + 5a_{5-2}$ $=4a_4 + 5a_3$ = 4(166) + 5(34)=834 ∴ Sequence is 2,6,34,166,834----The recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ is linear homogeneous

Equation of degree 2.

It associated equation is

 $x^2 = 4x + 5$

Rewriting this as

 $x^2 - 4x - 5 = 0$

 $x^2 - 5x + x - 5 = 0$

(x-5)(x+1)=0

X=5 or x=-1

The roots of the equation is $s_1 = 5$ and $s_2 = -1$

Now, by theorem(i)

We can find value of \boldsymbol{u} and \boldsymbol{v}

From $a_n = us_1^n + vs_2^n$ ------ (A)

For n=1

 $a_{1} = us_{1} + vs_{12}$ 2 = u(5) + v(-1) $2 = 5u - v \qquad -----(i)$ For n = 2 $a_{2} = us_{1}^{n} + vs_{2}^{n}$ $6 = u(5)^{2} + v (-1)^{2}$ $6 = 25u + v \qquad -----(ii)$

Hence proved

(c) Prove that : If A, B and C are Boolean matrices of compatible sizes then, (A B) C = A (B C)

Sol== Solution:

Let us assume that

$$A = [a_{ij}] m \times n$$

$$B = [b_{jk}] m \times n$$

$$C = [c_{kl}] m \times n$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

$$i, e \quad (A+B)+C = A+(B+C)$$
Now,
$$A + B = [a_{ij}] m X n + [b_{jk}] m \times n$$

$$= [a_{ij}] + b_{jk}] m \times n$$

 $(A + B) + C = [a_{ij}+b_{jk}] m \times n + [c_{kl}] m \times n$

 $= [a_{ij} + b_{jk} + c_{kl}] \mathbf{m} \times \mathbf{n} \qquad (1)$

 $(\mathbf{B} + \mathbf{C}) = [\mathbf{b}_{jk}] \mathbf{m} \mathbf{X} \mathbf{n} + [\mathbf{c}_{kl}] \mathbf{m} \times \mathbf{n}$

 $=[b_{jk}+c_{kl}] m \times n$

 $(B + C) + A = [a_{ij}] m \times n + [b_{jk} + c_{kl}] m \times n$

 $= [a_{ij} + b_{jk} + c_{kl}] \mathbf{m} \times \mathbf{n} \qquad \longrightarrow \qquad (2)$

From equation (1) & (2)

We get $(A \lor B) \lor C = A \lor (B \lor C)$

i.e.

$$(A \Theta B) \Theta C = A \Theta (B \Theta C)$$

EITHER

2. (a) Obtain principle disjunctive normal form of : (i) (P (Q) \ni (Q (R) \ni (P (R) (ii) P \Box Q \Box R

 $\Rightarrow [(P \lor Q) \forall [P \land (TQ \lor TR)]] \lor T[(TP \land TQ) \lor T(P \land TR)]$ {by associative property $\Rightarrow [(P \lor Q) \land T(P \land T(Q \lor R))] \lor [(TP \land TQ \lor TR)]$ {By demorgans and distributive prop. Respt. $\Rightarrow [(P \lor Q) \land TT(P \lor (Q \land R))] \lor (TP \land T(Q \land R))$ {by demorgans property $\Rightarrow [(P \lor Q) \land (P \lor (Q \land R)] \lor T(P \lor (Q \land R))$ {by demorgans property & $TTA \Rightarrow A$ $\Rightarrow [P \lor (Q \land (Q \land R))] \lor T(P \lor (Q \land R)]$ {by distributive property. $\Rightarrow [P \lor (Q \land Q) \land R) \lor T(P \lor Q \land R)]$ {by associative property. $\Rightarrow [P \lor (Q \land Q) \land R) \lor T(P \lor Q \land R)]$ {by idempotent property & $P \land P \Rightarrow P$ $\Rightarrow T$ { $P \lor TP \Rightarrow T$

Hence Proved

- A. Obtain the Principal Disjunction Normal Form of :
- 1. $7P \lor Q$ 2. $(P \land Q) \lor (7P \land R) \lor (Q \land R)$

Solution:

1. [¬]7P∨ Q

$\Rightarrow_{(7P^{\wedge}T)} \vee_{(Q^{\wedge}T)}$	{ by P [∧] T=P
$\Rightarrow_{[Q^{\wedge}(Q^{\vee})]} \vee_{[Q^{\wedge}(P^{\vee})]}$	{byP [∨] ⊺ P=T
$\Rightarrow_{[(Q^{\wedge}P)^{\vee}(Q^{\wedge}PT)]} [(Q^{\wedge}PT)^{\vee}(Q^{\wedge}PT)]$	{by distributive property
$\Rightarrow_{(Q^{A}P)} \lor (Q^{A}P) \lor (Q^{A}P) \lor (Q^{A}P)$	{by Associative property
$\Rightarrow_{(P^{\wedge}Q)} \lor_{(P^{\wedge}q_{\Gamma})} \lor_{(P^{\vee}q_{\Gamma})} \mathrel_{(P^{\vee}q_{\Gamma})} \mathrel_{(P^{\vee$	{by Commutative property

: It is form of sum of elementary product of min term.

Hence, it is in the form of Principal Disjunction Normal Form.

(d) Obtain conjunctive normal form of : $\dot{\mathbf{u}}(\mathbf{P} \lor \mathbf{Q})$ $(P \land Q).$ ┢ Proof:-

$$\begin{aligned} 7(P \lor Q) \leftrightarrow (P \land Q) \\ by R \leftrightarrow S \Leftrightarrow (R \to S) \land (S \to R) \\ \Leftrightarrow [7(P \lor Q) \to (P \land Q)] \land [(P \land Q) \to 7(P \lor Q)] \\ \Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)] \quad \{P \to Q \Rightarrow 7P \lor Q \\ \Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)] \quad \{By \text{ Demorgans property } \& 77P \Rightarrow P \\ \Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By \text{ Distributive property} \\ \Leftrightarrow ((P \lor P) \lor Q) \land ((Q \lor Q) \lor P) \land ((7P \lor 7P) \lor 7Q) \land ((7Q \lor 7Q) \lor 7P) \{By \text{ Associative property} \\ \Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \lor P = P \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{By \text{ commulative property} \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \quad \{P \land P = P \end{cases} \end{aligned}$$

It is the form of product of elementary sum of min terms.

Hence it is form of Principal Conjunction Normal Form.

(c) Obtain Principal Disjunctive Normal Form of $P \rightarrow ((P \rightarrow Q), \land \hat{u} (\hat{u}Q \lor \hat{u} P)).$

{ by P [∧] T=P
$_{\rm \{by\ P} \lor _{T=T}$
{by distributive property
{by Associative property
{by Commutative property

: It is form of sum of elementary product of min term.

Hence, it is in the form of Principal Disjunction Normal Form.

$$\begin{aligned} 7(P \lor Q) \leftrightarrow (P \land Q) \\ by R \leftrightarrow S \Leftrightarrow (R \to S) \land (S \to R) \\ \Leftrightarrow [7(P \lor Q) \to (P \land Q)] \land [(P \land Q) \to 7(P \lor Q)] \\ \Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)] \quad \{P \to Q \Rightarrow 7P \lor Q \\ \Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)] \quad \{By \text{ Demorgans property } \& 77P \Rightarrow P \\ \Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By \text{ Distributive property} \\ \Leftrightarrow ((P \lor P) \lor Q) \land ((Q \lor Q) \lor P) \land ((7P \lor 7P) \lor 7Q) \land ((7Q \lor 7Q) \lor 7P) \{By \text{ Associative property} \\ \Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \lor P = P \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{By \text{ commulative property} \\ \Leftrightarrow (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \land P = P \end{cases} \end{aligned}$$

(b) Find an explicit formula for the sequence defined by $C_n = 6C_{n-1} + 7C_{n-2}$ with initial conditions $C_0 = 2, C_1 = 1.$

Sol== First find sequence for recurrence relation

 $a_n = 4a_{n-1} + 5a_{n-2}$ For n = 3 $a_3 = 4a_{3-1} + 5a_{3-2}$ $=4a_2+5a_1$ = 4(6) + 5(2)= 24 + 10= 34 For n = 4 $a_4 = 4a_{4-1} + 5a_{4-2}$ $=4a_3+5a_2$ =4(34) + 5(6)= 166 For n=5 $a_5 = 4a_{5-1} + 5a_{5-2}$ $=4a_4 + 5a_3$ = 4(166) + 5(34)=834 ∴ Sequence is 2,6,34,166,834----The recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ is linear homogeneous Equation of degree 2. It associated equation is $x^2 = 4x + 5$ Rewriting this as $x^2 - 4x - 5 = 0$ $x^2 - 5x + x - 5 = 0$ (x-5)(x+1)=0X=5 or x=-1

The roots of the equation is $s_1 = 5$ and $s_2 = -1$ Now, by teorem(i) We can find value of u and v From $a_n = us_1^n + vs_2^n$ ------(A) For n=1 $a_1 = us_1 + vs_{12}$ 2 = u(5) + v(-1) 2 = 5u - v -----(i) For n = 2 $a_2 = us_1^n + vs_2^n$ $6 = u(5)^2 + v(-1)^2$ 6 = 25u + v -----(ii)

Solving equation (i) and (ii)

 $5u-v \ = 2$

25u + v = 6

+ + +

30u = 8

U=8/30

Putting values of u in equation (i)

2 = 5 (8/30) - v

2 = (8/6) - v

2=8/6-2

2 = 8 - 12/6

V = -4/6

V = -2/3

Put value of u_1, v_1, s_2 and s_2 in equation (A)

 $a_n = us_1^n + vs_2^n$

 $a_n = (8/30) \ (5)^n + (-2/3) \ (-1)^n$

 $a_n = 8/30 (5)^n + -2/3 (-1)^n$

 \therefore Which is required formula.

(a) Define :
(i) Semigroup
(ii) Monoid
(iii) Subsemigroup
(iv) Group Homomorphism.

(i) Semigroup:-

Let S be a non-empty set and * be a binary operation on S. The algebraic system (S, *) is called a semigroup if the operation * is

(1) The operation * is a closed operation on set A.

(2) The operation * is an associative operation.

Or (S, *) is a semigroup if for any x, y, z $\in S$,

Free semigroup:

If * is an associative binary operation, and (A,*) is a semigroup. The semigroup(A,*) is called free semigroup by A.

Ex:

Consider an algebraic system (S,*) where $S = \{1,2,3,5,7,9----\}$ the set of all positive odd integers and * is a binary operation means multiplication. Determine whether (S,*) is a semigroup.

(ii) Monoid:-

Let us consider an algebraic system (M, *), where * is a binary operation on M. Then the system (M, *) is said to be a monoid if it satisfies the following properties:

- (1) The operation * is a closure operation on set A.
- (2) The operation * is an associative operation.
- (3) There exists an identify element w. r. t. The operation *.

Ex:-

Consider an algebra system (N, +), where the set $N = \{0,1,2,3---\}$ the set of natural numbers and + is an addition operation. Determine whether (N,+) is a monoid.

(iii) Subsemigroup:-

Let (S,*) be a semigroup and $T \subseteq S$, if the set T is closed number the operation * then (T,*) is said to be subsemigroups of (S,*).

Ex:

Consider a semigroup (N,+), where N is the sset of all natural number and + is an addition operation.

The algebric system (E,+) is a subsemigroup of (N,+), where E is a set of all +ve even integer.

(iv) Group homomorphism:-

Let (S,*) and (T,*) be two semigroups. An everywhere defined function f: $S \rightarrow T$ is called a homomorphism from (S,*) and (T,*)

If (a * b) = f(a) * f(b)

For all a and b in S.

If f is also onto.

We say that T is a homomorphic image of S.

(b)Let the number of edges of graph G be m. Then G has a Hamiltonian circuit if $m \ge 1/2$ (n2 - 3n + 6) where n = n0 of vertices.

Sol== partial order set :

Let A is a relation or set A .then relation R is called partial order. If it is reflexive, antisymentric and transitive.

If R is a partial order relation on set A. then set A together with partial order relation R is know as partial orderd set or partial order set.

Ex. Let Z be a set f integers " \leq " be a relation on Z.

· Reflexive property is satisfied.

$$(\because_{a \leq a} \forall_{a \in z})$$

Let $a, b \in z$

 $a \le b$ and $b \le a _ a=b$

Antisymmentric property is satisfied

```
a \le b and b \le c \_ a \le c
```

. Transitive property is satiesfide.

 \therefore "≤" is a partial oreder relation on Z

Similarly ">>"is also a partial oreder relation on Z.

Chain order set:

If every pair of element in a poset is comparable than poset A is called linear order set .Or set A is chain .

Hence it is called chain or linear orderd.

Lexicographic:

Let A×B is a cartesion product of two sets A &B .we define "<"as follow.

(a b) < (a' b') if a< a' or if a=a' then b< b'

This is used in dictionary.

Hence it is also as dictionary

Ex. Help, help

Help< help

Isomorphism:

Let $(A \leq)$ and $(A' \leq')$ be posets and let f: A \rightarrow A!be a one-to-one correspondence between f: A & A! The function f is called an Isomorphism from A to A'

It for any a, b $\in A$, a $\leq b$

 $\Leftrightarrow_{f(a) \leq a(b).}$

(Proof left)

(c) Let G be the set of all non-zero real numbers and let ab a * b = . Show that (G, *) is an Abelian group.

Sol== To show: (G,*) is an abelian group.

Closure property:

The set G is closed under the operation *.

Since,
$$a^*b = \frac{ab}{2}$$
 is a real number.

Hence, belongs to G.

Associative property:

The operation * is associative.

Let a, b, $c \in G$, then

We have

$$(a*b)*c = \left(\frac{ab}{2}\right)*c$$
$$= \frac{(ab)c}{4}$$

 $=\frac{abc}{4}$

Similarly, a* (b*c) * a =
$$\left(\frac{ab}{2}\right)$$

= $\frac{a(bc)}{4}$
= $\frac{abc}{4}$

(d) Let T be the set of all even integers. Show that the semigroup (z, +) and (T, +) are isomorphic Sol== solu:

Let a and d be any element in G, since R is an equivalence relation $b \in [a]$

If and only if [b] = [a]

Also G/R is a group

Therefore [b] = [a] if and only if $[e] = [a^{-1}] [b]$ $= [a^{-1}b]$ Thus, $b \in [a]$ if and only if $H = [e] = [a^{-1}b]$ That is, $b \in [a]$ if and only if $a^{-1}b \in H$ or $b \in aH$ This prove that [a] = aH for every $a \in G$ We can show Similar that $b \in [a]$ if and only if H = [e] $= [b] [a]^{-1}$ $= [ba]^{-1}$ This is equivalent to the statement [a] = Ha

Thus, [a] = are isomorphic

1] (A) Let $U = \{a, b, c, d, e, f, g, h, k\}$, $A = \{a, b, c, g\}$, $B = \{d, e, f, g\}$, $C = \{a, c, f\}$ and $D = \{f, h, k\}$.

Compute:

(i)	A⊕B	(ii) C⊕ D
(iii)	$\overline{A \cup B}$	(iv) $\overline{C \cap D}$

Solution:

(B) (i) Construct truth table for statement:

 $\mathbf{p} \Rightarrow \mathbf{q} \Leftrightarrow \forall \mathbf{p} \lor \mathbf{q}$

soln :

$$(1) \quad (2) (3) \quad (4) \quad (5)$$

Р	Q	$(P \Rightarrow Q)$	P	ד $P \lor Q$
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

From (3) and (5) column

 $\therefore p \Longrightarrow q \Leftrightarrow \exists p \lor q$ Hence proved.

(ii) Prove that if m^2 is odd then m is odd. Soln:

OR

(c) Explain principle of mathematical induction and use induction method to

Prove:

$$\left(\bigcup_{i=1}^{n} Ai\right) \cap B = \bigcup_{i=1}^{n} (Ai \cap B)$$

Soln:

We can prove by mathematical induction.

Basic of induction: For n=1

$$P(1) = LHS = A1 \cap B$$

$$P(1) = LHS = A1 \cap B$$

 \therefore *LHS* = RHS

$$A1 \cap B = A1 \cap B$$

P(1) is true for n=1

Induction step: For n=k

 $\mathbf{P}(\mathbf{k}) = \mathbf{LHS} = \left(\bigcup_{i=1}^{k} Ai\right) \cap B = \bigcup_{i=1}^{k} (Ai \cap B)$

 $\mathbf{P}(\mathbf{k}) = \mathbf{R}\mathbf{H}\mathbf{S} = \bigcup_{i=1}^k (Ai \cap B)$

 \therefore p(k) is also true for n=k

Similarly for n = k+1

LHS =
$$(\bigcup_{i=1}^{k+1} Ai) \cap B$$

= $(A1 \cup A2 \cup \dots \cup Ak \cup Ak+1) \cap B$
= $((\bigcup_{i=1}^{k} Ai) \cup Ak+1) \cap B$
= $((\bigcup_{i=1}^{k} Ai) \cap B) \cup (Ak+1 \cap B)$ {by distributive property}
= $(\bigcup_{i=1}^{k} (Ai \cap B)) \cup (Ak+1 \cap B)$
= $\bigcup_{i=1}^{k+1} (Ai \cap B)$
= RHS

Thus the implication $p(k) \rightarrow p(k+1)$ is a tautology

∴ By principle of Mathematic Induction

P(n) is true for all $n \ge 1$

Hence proved

$$\left(\bigcup_{i=1}^{n} Ai\right) \cap B = \bigcup_{i=1}^{n} (Ai \cap B)$$

(D) Solve the recurrence relation:

$$a_n = 4a_{n-1} + 5a_{n-2}$$
 where $a_1 = 2, a_2 = 6$

Soln: First find sequence for recurrence relation

$$a_{n} = 4a_{n-1} + 5a_{n-2}$$

For n = 3 $a_{3} = 4a_{3-1} + 5a_{3-2}$
= $4a_{2} + 5a_{1}$
= $4(6) + 5(2)$
= $24 + 10$
= 34
For n = 4 $a_{4} = 4a_{4-1} + 5a_{4-2}$
= $4a_{3} + 5a_{2}$
= $4(34) + 5(6)$
= 166
For n=5 $a_{5} = 4a_{5-1} + 5a_{5-2}$
= $4a_{4} + 5a_{3}$
= $4(166) + 5(34)$
= 834

∴ Sequence is 2,6,34,166,834----

The recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ is linear homogeneous

Equation of degree 2.

It associated equation is

 $x^2 = 4x + 5$

Rewriting this as

 $x^2 - 4x - 5 = 0$

 $x^2 - 5x + x - 5 = 0$

(x-5)(x+1)=0

X=5 or x=-1

The roots of the equation is $s_1 = 5$ and $s_2 = -1$

Now, by theorem(i)

We can find value of u and v

From $a_n = us_1^n + vs_2^n$ ------ (A)

For n=1

$$a_1 = us_1 + vs_{12}$$

 $2 = u(5) + v(-1)$
 $2 = 5u - v$ -----(i)
For n = 2

$$a_{2} = us_{1}^{n} + vs_{2}^{n}$$

$$6 = u(5)^{2} + v (-1)^{2}$$

$$6 = 25u + v \qquad ------(ii)$$

Solving equation (i) and (ii)

$$5u - v = 2$$

25u + v = 6

+ + +

30u = 8

U=8/30

Putting values of u in equation (i)

$$2 = 5 (8/30) - v$$

 $2 = (8/6) - v$

2 = 8/6 - 2

2 = 8 - 12/6V = -4/6

Put value of u_1, v_1, s_2 and s_2 in equation (A)

$$a_n = us_1^n + vs_2^n$$

$$a_n = (8/30) \ (5)^n + (-2/3) \ (-1)^n$$

$$a_n = 8/30 \ (5)^n + -2/3 \ (-1)^n$$

∴Which is required formula?

Q.2

Either

A. Explain dual formula and show that if $A(P,Q,R) = 7P \land 7(Q \lor R)$ then i. $A(7P,7Q,7R) \Leftrightarrow 7A * (P,Q,R)$

ii. $7A(P,Q,R) \leftrightarrow A^*(7P,7Q,7R)$

Solution:

(i) $A(7P,7Q,7R) \iff 7A * (P,Q,R)$

We have to prove that, if $A(P,Q,R)=7P \land 7(Q \lor R)$ then

$$A(7P,7Q,7R) \iff 7A * (P,Q,R)$$

$$\Rightarrow A(P,Q,R) = 7P \land 7(Q \lor R)$$

$$= (7P \land 7Q \land 7R)$$

$$= 7 (P \lor Q \lor R)$$

$$\Rightarrow A(7P,7Q,7R) = (P \lor Q \lor R)$$

$$\Rightarrow A^*(P,Q,R) = 7P \land 7(Q \lor R)$$

$$= (7P \land 7Q \land 7R)$$

$$= 7 (P \lor Q \lor R)$$

$$\Rightarrow 7A^*(P,Q,R) = (P \lor Q \lor R)$$
(1)

From eq 1 & 2

We get,

$$A(\mathsf{T}P,\mathsf{T}Q,\mathsf{T}R) \Leftrightarrow \mathsf{T}A * (P,Q,R)$$

Hence proved

(ii) We have to prove that , if $A(P,Q,R)=7P\wedge7(Q\vee R)$ then

 $7A(P,Q,R) \leftrightarrow A^*(7P,7Q,7R)$

$$\implies A(P,Q,R) = 7P \land 7(Q \lor R)$$

$$= \forall (P \lor (Q \lor R))$$

 \Rightarrow 7A(P,Q,R)= 77(P \lor (Q \lor R))

$$\Rightarrow A^*(7P,7Q,7R) = P \lor (Q \lor R)$$
 (2)

We get,

 $7A(P,Q,\mathbf{F} \ 7A(P,Q,R) \leftrightarrow A^*(7P,7Q,7R)$

Hence proved

- A. Obtain the Principal Disjunction Normal Form of :
- 1. [¬]P[∨] Q
- 2. $(\mathbf{P} \wedge \mathbf{Q})^{\vee} (\mathbf{7}\mathbf{P} \wedge \mathbf{R})^{\vee} (\mathbf{Q} \wedge \mathbf{R})$

Solution:

1.
$$7P \lor Q$$
 $\Rightarrow (7P \land T) \lor (Q \land T)$ {by $P \land T=P$ $\Rightarrow [7P \land (Q \lor 7Q)] \lor [Q \land (P \lor 7P)]$ {by $P \lor 7P=T$ $\Rightarrow [(7P \land Q) \lor (7P \land 7Q)] \lor [(Q \land P) \lor (Q \land 7P)]$ {by distributive property $\Rightarrow (7P \land Q) \lor (7P \land 7Q) \lor (Q \land P) \lor (Q \land 7P)$ {by Associative property $\Rightarrow (7P \land Q) \lor (7P \land 7Q) \lor (P \land Q) \lor (P \land 7Q)$ {by Commutative property

 \therefore It is form of sum of elementary product of min term.

Hence, it is in the form of Principal Disjunction Normal Form.

2.
$$(P^{\wedge}Q)^{\vee}(7P^{\wedge}R)^{\vee}(Q^{\wedge}R)$$

 $\Rightarrow [(P^{\wedge}Q)^{\wedge}T]^{\vee}[(7P^{\wedge}R)^{\wedge}T]^{\vee}[(Q^{\wedge}R)^{\wedge}T]$
 $\{B_{y}P^{\vee}7P=T$
 $\Rightarrow [(P^{\wedge}Q)^{\wedge}(R^{\vee}7R)]^{\vee}[(7P^{\wedge}R)^{\wedge}(Q^{\vee}7Q)]^{\vee}[(Q^{\wedge}R)^{\wedge}(P^{\vee}7P)] \quad \{b_{y}P^{\vee}7P=T$
 $\Rightarrow [(P^{\wedge}Q^{\wedge}R)]^{\vee}[(P^{\wedge}Q^{\wedge}R)]^{\vee}[(7P^{\wedge}R^{\wedge}Q)^{\vee}(7P^{\wedge}R^{\wedge}7Q)]^{\vee}[(Q^{\wedge}R^{\wedge}P)^{\vee}(Q^{\wedge}R^{\wedge}7P)]$
by distributive property

{

$$\Rightarrow_{(P^{\wedge}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\wedge}R)^{\vee}(P^{\vee}Q^{\vee}R)^{\vee}($$

{by Commutative property

 \therefore it is form of sum of elementary product of min term.

Hence, It is in the form of Principal Disjunction Normal Form.

OR

(C) Determine whether the conclusion C follows logically from premises H1and H2:

(i) H1 : P \rightarrow Q H2 : 7 P C : Q (ii) H1 : P \rightarrow Q H2:7(P \wedge Q)C:7 P (iii) H1:7 P H2: P \rightleftharpoons Q C:7(P \wedge Q) (iv) H1: P \rightarrow Q H2: Q C:P

(D) Show that:

 $(\mathbf{X}) (\mathbf{P}(\mathbf{X}) \lor \mathbf{Q}(\mathbf{X})) \Longrightarrow (\mathbf{X}) \mathbf{P}(\mathbf{X}) \lor (\exists \mathbf{X}) \mathbf{Q}(\mathbf{X})$

Q.3)

(A) (i) If $A \subseteq C$ and $B \subseteq D$ then prove that $A \times B \subseteq C \times D$ Soln :-

Given that If $A \subseteq C$ and $B \subseteq D$

To prove: $A \times B \subseteq C \times D$

Proof: Let $(x,y) \in A \times B$, then $x \in A$ and $y \in B$

Since $A \subseteq C$ and $B \subseteq D$, $x \in C$ and $x \in D$

Hence, $(x,y) \in C \times D$

Then

$A \times B \subseteq C \times D$	

Hence proved

(iii) Let $A=\{1,2,4\}$, $B=\{2,5,7\}$ and $c=\{1,3,7\}$

Show that $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(B) (ii) Let R and S are relation from A to B then prove that:

(i) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$

Ans: (i) Let (a,b) ∈ $(R ∩ S)^{-1}$

So, we have $(b,a) \in (R \cap S)$

Now $(b,a) \in R$ and $(b,a) \in S$

This mean $(a,b) \in R^{-1}$ and $(a,b) \in S^{-1}$

Hence $(a,b) \in R^{-1} \cap S^{-1}$ -----(i)

Conversely,

Let, (a,b) $\in R^{-1} \cap S^{-1}$

So, we have $(a,b) \in R^{-1}$ and $(a,b) \in S^{-1}$

This means $(b,a) \in R$ and $(b,a) \in S$

So, $(b,a) \in (R \cap S)$ -----(ii)

From (i) and (ii) we have

 $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$

Hence Proved

(ii) $\overline{R \cap S} = \overline{R} \cup \overline{S}$

OR

(C)Let A = B = {1,2,3,4}, R= {(1,1),(1,3),(2,3),(3,1),(4,2),(4,4)}

And
$$S = \{(1,2), (2,3), (3,1), (3,2), (3,1), (3,2), (4,3)\}$$
 then compute

 $M_{R\cap S}, M_{R\cup S}, {}^{\mathrm{M}}R^{-1}, {}^{\mathrm{M}}S^{-1}$

(D) Let A be a set with |A| = n and let R be a relation on A. Then prove that:

 $\boldsymbol{R}^{\infty} = \boldsymbol{\mathrm{R}} \cup \boldsymbol{R}^2 \cup \ldots \cup \boldsymbol{R}^n$

EITHER

4 (A) (i) Explain:

Post, chain, Hasses Diagram and draw the Hasses diagram of posset A with

5 (A)Let (G *) and (G' *') be two group and let $f: G \rightarrow G'$ be a homomorphism from G to G' then

(i) **f**(e)=e' where e is identity of G and e' is identity of G'

(ii)
$$f(a^{-1}) = (f(a))^{-1}$$

solun: (a) Let x=f(e) then

$$x *' x = f(e) *' f(e)$$

= f(e * e)
= f(e)
= x

So, x*' x=x

Multiplying both side by x⁻¹

On right, we obtain

$$X = x^*, x^*, x^{-1} = x^*, x^{-1} = e^{-1}$$

Thus f(e) = e'

(b) a *' $a^{-1} = e$

So, $f(a *' a^{-1}) = f(e)$

= e' by part(a)

Or $f(a) *' f(a^{-1}) = e's$

Since, f is a homomorphism

Similarly, $f(a^{-1}) *' f(a) = e'$

Hence $f(a^{-1}) = (f((a))^{-1})^{-1}$

(B) (i) Let G be an abelian group with identity e and let $H=\{x:x^2=e\}$. Show that H is a subgroup of G.

```
(ii)Insertion of two sub subgroup of G is a subgroup of G
```

OR

(C) Define:

Finite state Machine, state transition function and Moore Machine and

Draw diagraph whose table is: (summer-13)

(D) Let R be a congruence relation on a group G and let H={e}, the equivalent class containing the identity. Then H is a normal subgroup of G and for each

 $a \in G[a] = Ha = aH$ prove this

solu:

Let a and d be any element in G, since R is an equivalence relation $b \in [a]$

```
If and only if [b] = [a]
```

Also G/R is a group

Therefore [b] =[a] if and only if

 $[e] = [a^{-1}] [b]$

 $= [a^{-1} b]$

Thus, $b \in [a]$ if and only if

 $H = [e] = [a^{-1} b]$

That is, $b \in [a]$ if and only if

 $a^{-1}b \in H$ or $b \in aH$

This prove that

[a] = aH for every $a \in G$

We can show

Similar that $b \in [a]$ if and only if

H = [e]

 $= [b] [a]^{-1}$

 $= [ba]^{-1}$

This is equivalent to the statement [a] = Ha

Thus, [a] = aH = Ha and H is normal.

1. EITHER

(A) Prove by mathematical induction that, for all

$$n! \ge 1$$
,
 $n! \ge 2^{n-1}$, where
 $1!=1$ and $n!=n(n-1)!$

Solution:-

GCD(a,b).LCM(a,b) = ab

Verify above result for a = 100, b = 80

Proof:-

Let p1, p2, p3-----pn be the prime factor of a and b.

$$\therefore a = p1^{a_1} * p2^{a_2} * p3^{a_3} * - - - * pn^{a_n} \\ \therefore b = p1^{b_1} * p2^{b_2} * p3^{b_3} * - - - * pn^{b_n} \} \to (1)$$

By definition of LCM and GCD, we get

$$\begin{split} GCD(a,b) &= p1^{\min(a1,b1)} * p2^{\min(a2,b2)} * p3^{\min(a3,b3)} * - - - * pn^{\min(an,bn)} \\ LCM(a,b) &= p1^{\max(a1,b1)} * p2^{\max(a2,b2)} * p3^{\max(a3,b3)} * - - - * pn^{\max(an,bn)} \\ L.H.S &= GCD(a,b) * LCM(a,b) \\ &= [p1^{\min(a1,b1)} * p2^{\min(a2,b2)} * p3^{\min(a3,b3)} * - - - * pn^{\min(an,bn)}] * \\ [p1^{\max(a1,b1)} * p2^{\max(a2,b2)} * p3^{\max(a3,b3)} * - - - * pn^{\max(an,bn)}] \\ &= [p1^{\min(a1,b1)} * p1^{\max(a1,b1)}] * [p2^{\min(a2,b3)} * p2^{\max(a2,b2)}] * \\ [p3^{\min(a3,b3)} * p3^{\max(a3,b3)}] * - - - * [pn^{\min(an,bn)} * p2^{\max(an,bn)}] \\ &= (p1^{a1} * p1^{b1}) * (p2^{a2} * p2^{b2}) * (p3^{a3} * p3^{b3}) * - - - (pn^{an} * pn^{bn}) \\ &= (p1^{a1} * p2^{a2} * p3^{a3} * - - - * pn^{an}) * (p1^{b1} * p2^{b2} * p3^{b3} * - - - * pn^{bn}) \\ form eq^{n} (1) \\ &= a * b \\ &= R.H.S \\ \therefore L.H.S = R.H.S \\ \therefore LCM(a,b).GCD(a,b) = a.b \end{split}$$

Verification of this result for a =100, b = 80

$$100 = 1*2*2*5*5$$

$$80 = 1*2*2*2*2*5$$

$$GCD(100,80) = 1*2*2A = \pi r^{2}*5$$

$$= 20$$

$$LCM(100,80) = 1*2*2*2*2*5*5$$

LCM(100,80). GCD(100,80) = 100*80

$$20*400 = 8000$$

OR

(C) Prove that :-

If A, B and C are Boolean matrices of compatible sizes, then

$$(AOB) OC = AO(BOC)$$

Solution:

Let us assume that

$$A = [a_{ij}] m \times n$$
$$B = [b_{jk}] m \times n$$
$$C = [c_{kl}] m \times n$$
$$(A \lor B) \lor C = A \lor (B \lor C)$$
$$i,e \quad (A+B)+C = A+(B+C)$$

Now,

 $\mathbf{A} + \mathbf{B} = [\mathbf{a}_{ij}] \mathbf{m} \mathbf{X} \mathbf{n} + [\mathbf{b}_{jk}] \mathbf{m} \times \mathbf{n}$

 $= [a_{ij}] + b_{jk}] m \times n$

$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = [\mathbf{a}_{ij} + \mathbf{b}_{jk}] \mathbf{m} \times \mathbf{n} + [\mathbf{c}_{kl}] \mathbf{m} \times \mathbf{n}$$

$$= [a_{ij} + b_{jk} + c_{kl}] m \times n \qquad (1)$$

$$(\mathbf{B} + \mathbf{C}) = [\mathbf{b}_{jk}] \mathbf{m} \mathbf{X} \mathbf{n} + [\mathbf{c}_{kl}] \mathbf{m} \times \mathbf{n}$$

= $[b_{jk} + c_{kl}] m \times n$

 $(B + C) + A = [a_{ij}] m \times n + [b_{jk} + c_{kl}] m \times n$

$$= [a_{ij} + b_{jk} + c_{kl}] m \times n$$
(2)

From equation (1) & (2)

We get $(A \lor B) \lor C = A \lor (B \lor C)$

i.e.

$(A \Theta B) \Theta C = A \Theta (B \Theta C)$

(D) Let m and n be integers. Prove that $n^2 = m^2$

If and only if n is m or n is -m.

2. EITHER

 $(P \lor Q) \land (7P \land Q)) \Leftrightarrow (7P \land Q)$ without using truth table.

Proof: $(P \lor Q) \land (7P \land Q)) \Leftrightarrow (7P \land Q)$

L.H.S

 $\Rightarrow (P \lor Q) \land (7P \land (7P \land Q))$ $\Rightarrow (P \lor Q) \land ((7P \land 7P) \land Q)$ {*By associative properties* $\Rightarrow (P \lor Q) \land (7P \land Q)$ {By idempotent properties \Rightarrow $(P \land (7P \land Q)) \lor (Q \land (7P \land Q))$ {By distributive properties \Rightarrow (($P \land 7P$) $\land Q$) \lor (($Q \land Q$) $\land 7P$) {By associative properties $\Rightarrow (F \land Q) \lor (Q \land 7P)$ $\{P \land 7P = F \& idempotent properties\}$ $\Rightarrow F \lor (Q \land 7P)$ $\{F \land Q = F\}$ $\Rightarrow F \lor (7P \land Q)$ *{By cummutative properties* $\Rightarrow (7P \land Q)$ $\{P \lor F = P\}$ $\Rightarrow R.H.S$

hence

$$(P \lor Q) \land (7P \land Q)) \Leftrightarrow (7P \land Q)$$

(B)Show that the following premises are inconsistent:-

(i) If Jack misses many classes through illness,

then he fail high school.

(ii) If Jack fails high school, the he is uneducated.

(iii) If Jack reads a lot of books, then he is not uneducated.

(iv) Jack misses many classes through illness and reads a lot of books.

Proof:-

We have to prove that given premises are inconsistent. To prove inconsistent we have

to derive contradiction from the given premises.

Let,E: Jack misses many classes.

S: Jack fails high School.

A: Jack read a lot of books.

H: Jack is uneducated.

Given premises are,

$$E \to S$$
$$S \to H$$
$$A \to 7H$$
$$E \to A$$

{1}	(1) $E \to S$	{ <i>Rule P</i>
{2}	$(2) S \to H$	{Rule P
{1,2}	$(3) \ E \to H$	$\{Rule \ T \ i, e \ P \to Q, Q \to R \Longrightarrow P \to R$
{4}	$(4) A \to 7H$	{Rule P
{4}	(5) $H \rightarrow 7A$	$\{Rule T i, e P \to Q \Leftrightarrow 7Q \to 7P$
{3,5}	$(6) \ E \to A$	$\{Rule \ T \ i, e \ P \to Q, Q \to R \Longrightarrow P \to R$
<i>{</i> 6 <i>}</i>	(7) $7E \lor 7A$	$\{Rlue T i, e P \to Q \Longrightarrow 7P \lor Q$
{7}	(8) $7(E \wedge A)$	{By Demorgans properties $i, e7E \lor 7A \Rightarrow 7(E \land A)$
{9 }	(9) $E \wedge A$	{Rule P
{8,9}	$(10)7(E\wedge A)\wedge(E\wedge A)$	$\{Rule T i, e P, Q \Longrightarrow P \land Q$

There is conjunction implies a contradiction (FALSE); hence the given premises are inconsistent.

OR

(C) Define conjunctive normal form and obtain a conjunctive normal formof

$$7(P \lor Q) \leftrightarrow (P \land Q)$$

Conjunctive Normal Form:- Any formula which is equivalent to a given formula and which consist of product of elementary sum is called conjunctive normal form of given formula.

Proof:-

 $\begin{aligned} 7(P \lor Q) \leftrightarrow (P \land Q) \\ by R \leftrightarrow S \Leftrightarrow (R \to S) \land (S \to R) \\ \Leftrightarrow [7(P \lor Q) \to (P \land Q)] \land [(P \land Q) \to 7(P \lor Q)] \\ \Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)] \quad \{P \to Q \Rightarrow 7P \lor Q \\ \Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)] \quad \{By \text{ Demorgans property } \& 77P \Rightarrow P \\ \Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By \text{ Distributive property} \\ \Leftrightarrow ((P \lor P) \lor Q) \land ((Q \lor Q) \lor P) \land ((7P \lor 7P) \lor 7Q) \land ((7Q \lor 7Q) \lor 7P) \{By \text{ Associative property} \\ \Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \lor P = P \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{By \text{ commulative property} \\ \Leftrightarrow (P \lor Q) \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q) \quad \{P \land P = P \end{cases} \end{aligned}$

It is the form of product of elementary sum of min terms.

Hence it is form of Principal Conjunction Normal Form.

(D)Show that $\mathbf{R} \wedge (\mathbf{P}^{\vee} \mathbf{Q})$ is a valid conclusion from the premises $\mathbf{P}^{\vee} \mathbf{Q}$,

$$Q \rightarrow R$$
, $P \rightarrow M$ and 7 M.

Solution:

{1}	(1) TM	{Rule P
{2}	(2) $\mathbf{P} \rightarrow \mathbf{M}$	{ Rule P
{2}	(3) TM→P	{ Rule T : P \rightarrow Q \Leftrightarrow _{7Q} \rightarrow _{7P}
{3}	(4) 7P	{ Rule T : P,P \rightarrow Q \Leftrightarrow Q

{5}	$(5) P^{\vee} Q$	{ Rule P
{5}	$(6)_{7P} \rightarrow \mathbf{Q}$	$\{\text{Rule } T: _{TP} \to Q \Leftrightarrow _{TT} P \lor Q \Leftrightarrow P \lor Q$
{4,6}	(7) Q	{ Rule T : P, P \rightarrow Q \Leftrightarrow Q
{8}	$(8)Q \rightarrow R$	{ Rule P
{7,8}	(9) R	{ Rule T : Q,Q \rightarrow R \Leftrightarrow R
{9,5}	(10) $\mathbb{R} \land (\mathbb{P} \lor \mathbb{Q})$ {Rule 7	$\Gamma: P,Q \Leftrightarrow P \land Q$
	Hence Proved.	

3. EITHER

(A) Find an explicit formula for the sequence defined by

$$a_n = 4a_{n-1} + 5a_{n-2}$$
 with initial conditions $a_1 = 2$, $a_2 = 6$.

Solution:

First find sequence for recurrence relation

$$a_{n} = 4a_{n-1} + 5a_{n-2}$$
For n = 3 $a_{3} = 4a_{3-1} + 5a_{3-2}$

$$= 4a_{2} + 5a_{1}$$

$$= 4(6) + 5(2)$$

$$= 24 + 10$$

$$= 34$$
For n = 4 $a_{4} = 4a_{4-1} + 5a_{4-2}$

$$= 4a_{3} + 5a_{2}$$

$$= 4(34) + 5(6)$$

= 166

For n=5
$$a_5 = 4a_{5-1} + 5a_{5-2}$$

= $4a_4 + 5a_3$
= $4(166) + 5(34)$
= 834

∴ Sequence is 2,6,34,166,834----

The recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ is linear homogeneous

Equation of degree 2.

It associated equation is

 $x^2 = 4x + 5$

Rewriting this as

 $x^2 - 4x - 5 = 0$

 $x^2 - 5x + x - 5 = 0$

(x-5)(x+1)=0

X=5 or x=-1

The roots of the equation is $s_1 = 5$ and $s_2 = -1$

Now, by teorem(i)

We can find value of u and v

From
$$a_n = us_1^n + vs_2^n$$
 -----(A)

For n=1

$$a_1 = us_1 + vs_{12}$$

 $2 = u(5) + v(-1)$
 $2 = 5u - v$ -----(i)

For n = 2

$$a_{2} = us_{1}^{n} + vs_{2}^{n}$$

$$6 = u(5)^{2} + v (-1)^{2}$$

$$6 = 25u + v \qquad -----(ii)$$

Solving equation (i) and (ii)

$$5u - v = 2$$

25u + v = 6

+ + +

30u = 8

U=8/30

Putting values of u in equation (i)

$$2 = 5 (8/30) - v$$
$$2 = (8/6) - v$$
$$2 = 8/6 - 2$$
$$2 = 8 - 12/6$$

V = -4/6

V = -2/3

Put value of u_1, v_1, s_2 and s_2 in equation (A)

 $a_n = us_1^n + vs_2^n$

 $a_n = (8/30) (5)^n + (-2/3) (-1)^n$

 $a_n = 8/30 (5)^n + -2/3 (-1)^n$

 \therefore Which is required formula.

(B) Let $A = \{a,b,c,d\}$ and let R be the relation on A that has the matrix.

(C) Let A = Z and let $R = \{(a, b)\} \in A X A : a \equiv r \pmod{2}$ and

 $b \equiv r \pmod{2}$.

Show that the relation R is an equivalence relation.

(D) Prove that,

Let **R** be a relation on a set **A**. Then R^{∞} is the transitive

Closure of R.

Solution:-

If a & b are in the set A then a R^{∞} iff there is a path in R from a to b.

Now R^{∞} is certainty transitive it a R^{∞} b and b R^{∞} c then the composition of path from a to b and b to c from sub path from a to b in R and so a R^{∞} c. To show that R^{∞} is the smallest transitive relation containing R.

We must show that if S is any transitive relation on A and R \subseteq S then R^{∞} smallest of S($R^{\infty} \subseteq S$)

We know that if S is transitive then,

 $S^{\infty}/S^{n} \subseteq S$ for all n. i,e if a & b are connected by a path of length n the a S b it follows that

$$S^{\infty} = \bigcup_{N \neq 1}^{\infty} aSb$$
$$S^{n} OR S^{\infty} = \bigcup_{n \neq 1}^{\infty} S^{n} \subseteq$$

It is also true if $R \subseteq S$ then R^{∞} is subset of S^{∞} since any path in R is also path in S patting this fact together, we see that,

If $R \subseteq S$ and S is transitive on A then,

S

 R^{∞} subset of $S^{\infty} \subseteq S$, $R^{\infty} \subseteq S$

This means that R is the smallest of all transitive relation on A, that contains R^{∞} .

4. EITHER

(A) Show that if n is a positive integer and $P^2 | n$, where p is prime number, then D_n is not Boolean algebra.

Proof:-

Suppose that P^2/n , $a/b \Rightarrow b = ac \ for \ sum c$

So, $n = p^2 \cdot q$ for some positive integer q.

: p is also a divisor of n and p is an element of Dn, (Divisor of n number i,e Dn)

 \rightarrow natural number i,e if Dn is a Boolean Algebra. Then p must have a complement p'.

Then GCD(p,p')=1 And LCM(P,P')=1 GCD.LCM(p,p')=p.p' i,epp'=n so, p'=n/p=1 p' =p.q i,e GCD(p,pq) = 1

This is impossible.

∵p& p.q have p as a common divisor.

(B) Find the Hamiltonian circuit for the given graph.

Answer:

Hamiltonian Graph:

A Hamiltonian graph is a graph that on a Hamiltonian path.

A Hamiltonian path uses each vertex exactly once but edges be include.

OR

(C) Let L is a bounded distributive lattice. Prove that, if a complement of an element in L exists then it is unique.

Proof:-

Lattice suppose a' and a'' are two complements of an element $a \in L$

$$a \wedge a'=0$$
 $a \wedge a''=0$
 $a \vee a'=I$ $a \vee a''=I$
We show that a'=a''
Now

$$a' = a' \wedge I$$

 $a' = a' \wedge (a \lor a'')$
 $a' = (a' \wedge a) \lor (a' \wedge a'')$
 $a' = 0 \lor (a' \wedge a'')$
 $a' = a' \wedge a''$ -----(1)

And

 $a'' = a'' \wedge I$ $a'' = a'' \wedge (a \vee a')$ $a'' = (a'' \wedge a) \vee (a'' \wedge a')$ $a'' = 0 \vee (a'' \wedge a')$ $a'' = a'' \wedge a'$ $a'' = a' \wedge a'' \qquad \{by \ commutative \ property \qquad -----(2)$ $\therefore a' = a'' \ (From \ equation \ (1) \ and \ (2) \)$ $\therefore \ Complement \ if \ exists \ is \ unique.$

 \therefore proved.

(D) Prove that : -

A tree with n vertices has n-1 edges.

Proof:-

Consider tree T(V,E)

By using mathematical induction on the number of vertices, n in T.

Suppose, it is true $n=m(\geq 2)$.

m- some positive integer.

To prove for n = m+1

Suppose, T has m+1 vertices.

If we remove an edge with end points u&v from T.

Then we are left with two sub trees T1(V1,E1) and T2(V2,E2)

Such that |V| = |V1| + |V2| AND |E| = |E1| + |E2|

T1 & T2 are connected with number cycles and having vertices less than n,

i,e $|V1| \le n \& |V2| \le n$,

i,e
$$|E1| = |V1| - 1; |E2| = |V2| - 1$$

|V| = |V1| + |V2|

|V| = (|E1| + 1) + (|E2| + 1)

 $|\mathbf{V}| = (|\mathbf{E}1| + |\mathbf{E}2| + 1) + 1$

$$|V| = |E1| + 1$$

OR
$$|\mathbf{E}| = (|\mathbf{V}1| - 1) + (|\mathbf{V}2| - 1) + 1$$

 $|\mathbf{E}| = (|\mathbf{V}1| + |\mathbf{V}2| - 1)$

|E| = m + 1 - 1

 $|\mathbf{E}| = \mathbf{m}$

This is prove that T has m edges which is sequence number.

5. EITHER

(A) Define :-

(i)	Semigroup
	~ .

- (ii) Monoid
- (iii) Subsemigroup
- (iv) Group homomorphism.

Answer:-

(i) Semigroup:-

Let S be a non-empty set and * be a binary operation on S. The algebraic system (S, *) is called a semigroup if the operation * is

(1) The operation * is a closed operation on set A.

(2) The operation * is an associative operation.

Or (S, *) is a semigroup if for any x, y, $z \in S$,

Free semigroup:

If * is an associative binary operation, and (A,*) is a semigroup. The semigroup(A,*) is called free semigroup by A.

Ex:

Consider an algebraic system (S,*) where $S = \{1,2,3,5,7,9---\}$ the set of all positive odd integers and * is a binary operation means multiplication. Determine whether (S,*) is a semigroup.

(ii) Monoid:-

Let us consider an algebraic system (M, *), where * is a binary operation on M. Then the system (M, *) is said to be a monoid if it satisfies the following properties:

- (1) The operation * is a closure operation on set A.
- (2) The operation * is an associative operation.
- (3) There exists an identify element w. r. t. The operation *.

Ex:-

Consider an algebra system (N, +), where the set $N = \{0, 1, 2, 3 - \dots\}$ the set of natural numbers and + is an addition operation. Determine whether (N, +) is a monoid.

(iii) Subsemigroup:-

Let (S,*) be a semigroup and $T \subseteq S$, if the set T is closed number the operation * then (T,*) is said to be subsemigroups of (S,*).

Ex:

Consider a semigroup (N,+), where N is the sset of all natural number and + is an addition operation.

The algebric system (E,+) is a subsemigroup of (N,+), where E is a set of all +ve even integer.

(iv) Group homomorphism:-

Let (S,*) and (T,*) be two semigroups. An everywhere defined function f: $S \rightarrow T$ is called a homomorphism from (S,*) and (T,*)

If
$$(a * b) = f(a) * f(b)$$

For all a and b in S.

If f is also onto.

We say that T is a homomorphic image of S.

(B) Define finite state machine. Construct digraph of machine whose table is

	a	b	c
S0	S0	S0	S0
S1	S2	S 3	S2
S2	S1	S0	S 3
S 3	S 3	S2	S 3

Answer:-

Finite state machines:

Finite state machine that accepts more than one input and gives single output then it is Finite-State-Machine.

Fig: Finite-State Machine.

Where I_s = input signal, O_s = output signal

Here I_{s1} , I_{s2} , I_{s3} I_{sn} is number of input which gives single output signal as shown in fig.

Definition:

Finite-State Machine define by 3-tuple (triple)

M = (S, I, F)

Where S = finite set of state of machine i,e S = $\{S_0, S_1, ---S_n\}$

I = finite set of input of machines.

F = Is the state transition function i,e F = $\{f_x | x \in I\}$

(for each
$$x \in I$$
, a function $f_x: S \to S$)

Solution:

Let finite-state machines define by 3-tuple.

 $\mathbf{M}=(\mathbf{S},\,\mathbf{I},\,\mathbf{F})$

Where S = $\{S_0, S_1, S_2S_3\}$

 $I = \{a, b, c\}$

F = state transition function.

Given that: Transition Table

	a	b	c
S0	S0	S0	S0
S1	S2	S 3	S2
S2	S1	S0	S 3
S 3	S 3	S2	S 3

From the above transition table draw digraph for the machine as follows.

Digraph:

OR

(C) Let G be the set of all non zero real numbers and Let a * b = ab/2 show that (G, *) is an abelian group.

Solution:-

If a, b are element in G the
$$\frac{ab}{2}$$
 is a non-zero real number.

To show: (G,*) is an abelian group.

Closure property:

The set G is closed under the operation *.

Since,
$$a^*b = \frac{ab}{2}$$
 is a real number.

Hence, belongs to G.

Associative property:

The operation * is associative.

Let a, b, $c \in G$, then

We have

$$(a*b)*c = \left(\frac{ab}{2}\right)*c$$

$$=\frac{(ab)c}{4}$$

$$= \frac{abc}{4}$$

Similarly, a* (b*c) * a = $\left(\frac{ab}{2}\right)$
$$= \frac{a(bc)}{4}$$
$$= \frac{abc}{4}$$

Identity :

To find the identity element.

Suppose that 'e' is a +ve real number.

Then, $e^* a = a$, where $a \in G$

$$\frac{ea}{2} = a$$
 or $e = 2$

Similarly, a * e = a

$$\frac{ae}{2} = a$$
 or $e = 2$

Thus, the identity element in G is G.

Inverse :

Suppose that $a \in G$.

If $a^{-1} \in Q$ is an inverse of a, then a $*a^{-1} = 4$.

Therefore,
$$\frac{aa^{-1}}{4} = 4$$
 or $a^{-1} = \frac{4}{a}$

Thus, the inverse of element 'a' in G is $\frac{4}{a}$

Commutative :

The operation * on G is commutative.

Since,
$$a * b = \frac{ab}{2} = b * a$$

Thus, the algebraic system (G, *) is closed, associative, identity element, inverse and commutative.

Hence, the system (G, *) is an abelian group.

(D) consider the semigroup (z, +) and the equivalence relation R on Z defined by aRb if and only if $a \equiv b \pmod{2}$. Show that this relation is a congruence relation.

Solution:

Remember that if $a \equiv b \pmod{2}$, then $2 \mid a - b$.

We now show that this relation is a congruence relation as follows.

	$a \equiv b \pmod{2}$			
and	$c \equiv d \pmod{2}$			
then	2 divide a – b			
and	2 divide c – d			
SO	a - b = 2m			
and	c - d = 2n			
where m and n are Z.				
Adding, we have				
	(a - b) + (c - d) = 2m + 2n			
Or	(a + c) - (b + d) = 2(m + n)			

So, $a + c \equiv b + d \pmod{2}$

Hence, the relation is congruence relation.

EITHER

- (A) Define:-
- i. Boolean Matrix
- ii. Join of Boolean Matrices
- iii. Meet of Boolean Matrices
- iv. Boolean product and

Show that $A \Theta (B \Theta C) = (A \Theta B) \Theta C$

		1	0	0	1	1	1	0	1	1
If	A=	0	1	1	$\mathbf{B} = 0$	0	1	C= 1	0	1
		1	0	0	1	0	1	0	0	1

Solution:

Let us assume that

$$A = [a_{ij}] m \times n$$
$$B = [b_{jk}] m \times n$$
$$C = [c_{kl}] m \times n$$
$$(A \lor B) \lor C = A \lor (B \lor C)$$
$$i,e \quad (A+B)+C = A+(B+C)$$

Now,

 $A + B = [a_{ij}] m X n + [b_{jk}] m \times n$ $= [a_{ij}] + b_{jk}] m \times n$ $(A + B) + C = [a_{ij} + b_{jk}] m \times n + [c_{kl}] m \times n$ $= [a_{ij} + b_{jk} + c_{kl}] m \times n \longrightarrow (1)$ $(B + C) = [b_{jk}] m X n + [c_{kl}] m \times n$

= $[b_{jk} + c_{kl}] m \times n$

 $(B + C) + A = [a_{ij}] m \times n + [b_{jk} + c_{kl}] m \times n$

 $= [a_{ij} + b_{jk} + c_{kl}] m \times n$ (2)

From equation (1) & (2)

We get $(A \lor B) \lor C = A \lor (B \lor C)$

i.e.

 $A \Theta (B \Theta C) = (A \Theta B) \Theta C$

(B) Make truth table for

i. $(p \land q) \lor (7p)$

ii.
$$(\mathbf{p}^{\downarrow}\mathbf{q})^{\downarrow}\mathbf{r}$$

Solution: $(p \land q) \lor (7p)$

Truth Table:

р	q	(p ∧ q)	(קד)	$(\mathbf{p} \wedge \mathbf{q}) \vee (\mathbf{p} \wedge \mathbf{q})$
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	Т

$$(\mathbf{p}^{\downarrow}\mathbf{q})^{\downarrow}\mathbf{r}$$

Truth Table:

р	q	r	$(\mathbf{p}^{\downarrow}\mathbf{q})$	$(\mathbf{p}^{\downarrow}\mathbf{q})^{\downarrow}\mathbf{r}$
Т	Т	Т	F	F
Т	Т	F	F	Т
Т	F	Т	F	F
Т	F	F	F	Т
F	Т	Т	F	F
F	Т	F	F	Т
F	F	Т	Т	F
F	F	F	Т	F

OR

(C) Use Induction method to prove that

$$(\bigcap_{i=1}^{n} Ai) = \bigcup_{i=1}^{n} \overline{Ai}$$

Solution:

$$\overline{A1 \cap A2 \cap A3 - - - \cap An} = \overline{A1} \cup \overline{A2} \cup \overline{A3} - - - \cup \overline{An}$$

Basic Steps:

Let n=1

$$P(A) = \overline{A1} = \overline{A1}$$

P(n) is true for n=1

Induction Steps:

Let us assume that P(n) is true for n=k

$$P(k) = (\bigcap_{i=1}^{k} Ai) = \bigcup_{i=1}^{k} \overline{Ai}$$

$$\therefore \overline{A1 \cap A2 \cap A3 - \cdots \cap Ak} = \overline{A1} \cup \overline{A2} \cup \overline{A3} - \cdots \cup \overline{Ak} \quad (1)$$

Now,

We have to prove that P(n) is true for n=k+1

$$P(k+1) = \left(\bigcap_{i=1}^{k+1} A_{i}\right) = \bigcup_{i=1}^{k+1} \overline{A_{i}}$$

$$\overline{A1 \cap A2 \cap A3 - \dots \cap Ak + 1} = \overline{A1} \cup \overline{A2} \cup \overline{A3} - \dots \cup \overline{Ak + 1}$$
L.H.S.

$$\Rightarrow \overline{A1 \cap A2 \cap A3 - \dots \cap Ak + 1}$$

$$\Rightarrow \overline{A1 \cap A2 \cap A3 - \dots \cap Ak + 1}$$

$$\Rightarrow \overline{A1 \cap A2 \cap A3 - \dots \cap Ak \cap Ak + 1}$$

$$\Rightarrow \overline{A1 \cap A2 \cap A3 - \dots \cap Ak \cap Ak + 1} \quad \{By \text{ demorgans property } \overline{A \cap B} = \overline{A} \cup \overline{B} \}$$

$$\Rightarrow \overline{A1} \cup \overline{A2} \cup \overline{A3} - \dots \cup \overline{Ak + 1} \quad \{From eq. (1)\}$$

$$\Rightarrow_{R.H.S.}$$

Hence Proved

P(n) is true for n=k+1

(D) Let m and be integers. Prove that $n^2 = m^2 If$ and if only if m=n or m= -n. Also prove that $3/(n^3 - n)$ for every positive integers

EITHER

Q.2

(A) Show that

 $(PVO)^{\land T(P^{\land}(TQ^{\lor} qR))} \vee (TP^{\land}TQ)^{\lor} \vee T(P^{\land}R)$

Is tautology without using truth table

 $\Rightarrow [(P \lor Q) \intercal [P \land (\intercal Q \lor \intercal R)]] \lor \intercal [(\intercal P \land \intercal Q) \lor \intercal (P \land \intercal R)]$ {by associative property $\Rightarrow [(P \lor Q) \land \forall P \land \forall Q \lor R)] \lor [(\forall P \land \forall Q \lor R)]$ {By demorgans and distributive prop. Respt. $\Longrightarrow [(P \lor Q) \land T(P \lor (Q \land R))] \lor (P \land T(Q \land R))$ {bydemorgans property { by demorgans property & $TA \Rightarrow$ $\Rightarrow [(P \lor Q) \land (P \lor (Q \land R)] \lor T (P \lor (Q \land R))$ А $\Rightarrow [P \lor (Q \land (Q \land R))] \lor \mathbf{7} (P \lor (Q \land R)]$ {by distributive property. $\Rightarrow [P \lor (Q \land Q) \land R) \lor \mathbf{7}(P \lor Q \land R)]$ {by associative property $\Rightarrow (P \lor (Q \land R)) \lor \forall P \lor (Q \land R))$ {by idempotent property & $P \land P \Longrightarrow P$ \Rightarrow T $\{P \lor T \Rightarrow T\}$

(B)Define conjunctive normal form and obtain a conjunctive normal formof

$$7(P \lor Q) \leftrightarrow (P \land Q)$$

Conjunctive Normal Form:- Any formula which is equivalent to a given formula and which consist of product of elementary sum is called conjunctive normal form of given formula.

Proof:-
$$7(P \lor Q) \leftrightarrow (P \land Q)$$
 $by R \leftrightarrow S \Leftrightarrow (R \rightarrow S) \land (S \rightarrow R)$ $\Leftrightarrow [7(P \lor Q) \rightarrow (P \land Q)] \land [(P \land Q) \rightarrow 7(P \lor Q)]$ $\Leftrightarrow [77(P \lor Q) \lor (P \land Q)] \land [7(P \land Q) \lor 7(P \lor Q)]$ $\{P \rightarrow Q \Rightarrow 7P \lor Q$ $\Leftrightarrow [(P \lor Q) \lor (P \land Q)] \land [(7P \lor 7Q) \lor 7(P \lor Q)]$ $\{By Demorgans property \& 77P \Rightarrow P$ $\Leftrightarrow [(P \lor Q \lor P) \land (P \lor Q \lor Q)] \land [(7P \lor 7Q \lor 7P) \land (7P \lor 7Q \lor 7Q)] \{By Distributive property$ $\Leftrightarrow (P \lor Q) \land (Q \lor P) \land (7P \lor 7Q) \land (7Q \lor 7P)$ $\langle P \lor Q \land (Q \lor P) \land (7P \lor 7Q) \land (7Q \lor 7P)$ $\langle P \lor Q \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q)$ $\langle P \lor Q \land (P \lor Q) \land (7P \lor 7Q) \land (7P \lor 7Q)$ $\langle P \lor Q \land (7P \lor 7Q)$ $\langle P \lor Q \land (7P \lor 7Q)$ $\langle P \land P = P$

It is the form of product of elementary sum of min terms.

Hence it is form of Principal Conjunction Normal Form.

(C) Show that $R^{\wedge}(P^{\vee}Q)$ is a valid conclusion from the premises $P^{\vee}Q$, $Q \rightarrow R$, $P \rightarrow M$ and 7 M.

Solution:	{1}	(1) T M	{Rule P
7Α π	{2}	(2) $\mathbf{P} \rightarrow \mathbf{M}$	{ Rule P
		(3) TM - TP	{ Rule T : P \rightarrow Q \Leftrightarrow $_{7Q}{7P}$
	{3}	(4) 7P	{ Rule T : P \rightarrow Q \Leftrightarrow Q
		(5) $\mathbf{P} \lor \mathbf{Q}$	{ Rule P
$= r^2$		$(6) \rightarrow P \rightarrow Q$	$\{\text{Rule } T: \forall P \rightarrow Q \Leftrightarrow \forall P \lor Q \Leftrightarrow P \lor Q$
	{4,6}	(7) Q	{ Rule T : P \rightarrow Q \Leftrightarrow Q
	{8}	$(8)Q \rightarrow R$	{ Rule P
	{7,8}	(9) R	$\{Q,Q\to R \Leftrightarrow R$
	<i>{</i> 9,5 <i>}</i>	(10) $\mathbb{R} \wedge (\mathbb{P} \vee \mathbb{Q})$	{Rule T : P,Q \Leftrightarrow P \land Q

Hence Proved.

(D) Show that

$$(\mathbf{x}) (\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})) \land (\mathbf{x}) (\mathbf{Q}(\mathbf{x}) \to \mathbf{R}(\mathbf{x})) \Longrightarrow (\mathbf{x}) (\mathbf{P}(\mathbf{x}) \to \mathbf{R}(\mathbf{x}))$$

Solution:

Given Pr	remises are	
	$(\mathbf{x}) (\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})) \land (\mathbf{x})(\mathbf{x})$	$Q(x) \rightarrow R(x)$
We have	to derives,	
$(\mathbf{x})(\mathbf{P}(\mathbf{x}$	$\rightarrow R(x)$	
{1}	$(1) (\mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow \mathbf{Q}(\mathbf{x}))$	{Rule P
{2}	(2) $P(y) \rightarrow Q(y)$	{Rule US : $(x)A(x) \rightarrow A(y)$
{3}	$(3) (x)(Q(x) \rightarrow R(x))$	{Rule P
{3}	$^{(4)}Q(y) \rightarrow_{R(y)}$	{Rule US : $(x)A(x) \rightarrow A(y)$
{2,4}	(5) $P(y) \rightarrow R(y)$	$\{Rule T : P \rightarrow Q, Q \rightarrow R \Rightarrow P \rightarrow P$
{5}	$(6)(x)(P(x) \rightarrow R(x))$	{Rule UG : $A(y) \rightarrow x A(x)$

Hence Prove.

Q.3 EITHER

(A) Define Cartesian product of two sets, partition of a set and prove that $A \times (B \bigcup C) = (A \times B) \bigcup (A \times C)$

Solution:

Cartesian product of two sets:

If A and B are the two non-empty sets, we define the product set or Cartesian product A×B as the set of all ordrded pair(a,b) with $a \in A$ and $b \in B$.

Thus.

A×B ={(a,b)| $a \in A \text{ and } b \in B$ }

Ex: let $A=\{1,2,3\}$ and $B=\{r,s\}$. Determine the product set of $A\times B$ and $B\times A$.

Solution: Let $A=\{1,2,3\}$ and $B=\{r,s\}$

To find : (1) $A \times B$ (2) $B \times A$

- (1) The Cartesian product of A and B is $A \times B = \{(1,r), (1,s), (2,r), (2,s), (3,r), (3,s)\}$
- (2) The Cartesian product or product sets of B and A is B×A ={(r,1),(r,2),(r,3),(s,1),(s,2),(s,3)}

Prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

 $\textbf{Solution}: \text{Let} (x,y) \in A \times (B \cup C) \Rightarrow \textbf{x} \in A \text{ and } y \in B \cup C$

 $\Rightarrow X \in A \text{ and } (y \in B \text{ or } y \in C)$ $\Rightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in A \text{ and } y \in C)$ $\Rightarrow (x,y) \in A \times B \text{ or } (x,y) \in (A \times C)$ $\Rightarrow (x,y) \in (A \times B) \cup (A \times C)$

Therefore,
$$A \times (B \cup C) \subset (A \times B) \cup (A \times C)$$
.....(1)

Now,

Conversely

Let
$$(x,y) \in (A \times B) \cup (A \times C)$$

 $\Rightarrow (x,y) \in (A \times B) \text{ or } (x,y) \in (A \times C)$
 $\Rightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in A \text{ and } y \in C)$
 $\Rightarrow x \in A \text{ and } y \in B \text{ or } B \text{ or } y \in C$
 $\Rightarrow x \in a \text{ and } y \in (B \cup C)$

Therefore, $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$(2) From (1) and (2), we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$ Hence proved.

(B) Let R is a relation from A to B, and let A_1 and A_2 be subsets of A. Then show that

(1)
$$R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$$
 and
(2) $R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$

Solution:

$$(1) \mathbf{R}(\mathbf{A}_1 \cup \mathbf{A}_2) = \mathbf{R}(\mathbf{A}_1) \cup \mathbf{R}(\mathbf{A}_2)$$

Let $y \in R(A_1 \cup A_2)$

 $\Rightarrow \exists_{x \in A_1} \bigcup_{A_2 \text{ s.t.}(x,y) \in R \text{ or } xRy}$

 $\Rightarrow \exists_{x_{\in} A_{1} \text{ or } x_{\in} A_{2}} \text{ or } x_{\in} A_{1} \& A_{2} \text{ s.t } (x,y)_{\in} R$

If $x \in A_1$ s.t $(x,y) \in R$ then $y \in R$ (A_1)

And If $x \in A_2$ s.t $(x,y) \in R$ then $y \in R(A_2)$

Now,

$$y_{\in R(A_1) \text{ or } y_{\in R(A_2)}} \Rightarrow y_{\in R(A_1)} \cup_{(A_2)}$$

 $\therefore_{\mathbf{R}} (\mathbf{A}_1 \bigcup_{\mathbf{A}_2)} \subseteq_{\mathbf{R}(\mathbf{A}_1) \text{ or } (\mathbf{A}_2) \dots \dots (1)}$

Now, suppose,

$$y_{\in R} (A^{1}) \bigcup_{R(A_{2})} R(A_{2})$$

$$\Rightarrow y_{\in R} (A^{1}) \text{ or } y_{\in R}(A^{2}) \text{ or } y_{\in R}(A^{1}) \& R(A_{2})$$
If $y_{\in R}(A^{1})$ then $\exists x \in A_{1} \text{ s.t. } (x,y) \in R$
If $y_{\in R}(A^{2})$ then $\exists x \in A_{2} \text{ s.t } (x,y) \in R$
 \therefore we have
 $\exists x_{\in A_{1}} \text{ or } A_{2} \text{ s.t } (x,y) \in R$
i.e. $\exists x \in A_{1} \bigcup_{R(A_{2})} \Rightarrow (x,y) \in R \Rightarrow y_{\in R}(A^{1} \bigcup_{A_{2}})$
 $\therefore R(A_{1}) \bigcup_{R(A_{2})} \subseteq R(A_{1} \bigcup_{A_{2}}).....(2)$
From (1) & (2) we get

$$\mathbf{R}(\mathbf{A}_1 \cup \mathbf{A}_2) = \mathbf{R}(\mathbf{A}_1) \cup \mathbf{R}(\mathbf{A}_2)$$

Hence proved

(2)
$$R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$$

Let $y \in R(A_1 \cap A_2)$
 $\Rightarrow \exists x \in A_1 \cap A_2 \text{ s.t.}(x,y) \in R$
 $\Rightarrow \exists x \in A_1 \text{ and} x \in A_2 \text{ s.t.}(x,y) \in R$

Now,

 $x \in A_1$ and $(x,y) \in R \implies y \in R(A_1)$ and $x \in A_2$ and $(x,y) \in R \implies y \in R(A_2)$

$$\therefore_{\mathbf{y} \in R^{(\mathbf{A}_1)} \& \mathbf{y} \in R^{(\mathbf{A}_2)} \Longrightarrow \mathbb{Z}_{\mathbf{y} \in R^{(\mathbf{A}_1)} \cap_{\mathbf{y} \in R^{(\mathbf{A}_2)}}$$

$$R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$$

(C) Let a={1,2,3} and let the relation R and S on A are R={(1,1), (1,2), (2,1), (1,3), (3,1)} S={(1,1), (1,2), (2,1), (2,2), (3,3)} Find \overline{R} , \mathbf{R}^{-1} , \overline{S} , \mathbf{S}^{-1} , $S \cap S$, $R \cup S$ (D)Let A be set with |A| = n and Let R be arelation on A then prove that $R^{\infty} = R \bigcup R^2 \bigcup \dots \bigcup R^n$

Q.4 EITHER

(A) Let the number of edges of G be M. Then prove that G has a Hamiltonian circuit if

$$\mathbf{m} \ge \frac{1}{2} (\mathbf{n}^2 - 3\mathbf{n} + \mathbf{6})$$

Proof:

Suppose U& V are two vertices of graph G that are not adjacent.

Let H be a graph product by elementary vertices U & K from G.

 \therefore H has n-2 vertices

 \therefore no. of edges in H are m-degree of a-degree of V.

 \therefore maximum no. of edges in H are n-2!

$$\frac{(n-2)!}{2!(n-2-2)!}$$

$$\Rightarrow \frac{(n-2)!}{2!(n-4)!}$$

$$\Rightarrow \frac{(n-2)(n-3)(n-4)!}{2!(n-4)!}$$

(n-4)! Get Cancel

$$\Rightarrow \frac{(n-2)(n-3)}{2}$$
$$\Rightarrow \frac{1}{2} (n^2 - 5n + 6)$$

$$\therefore \text{m-deg}(U) - \text{deg}(V) \le \frac{1}{2} (n^2 - 5n + 6)$$

$$m-\frac{1}{2} (n^2-5n+6) \le m-deg(U)-deg(V)$$

or

 $deg(U) {+} deg(V) {\,\geq\,} m {-} \frac{1}{2} \; (n^2 {-} 5n + 6)$

$$deg(U)+deg(V) \ge \frac{1}{2} (n^2-3n+6) - \frac{1}{2} (n^2-5n+6)$$
$$deg(U)+deg(V) \ge \frac{1}{2} [n^2-3n+6-n^2-5n-6]$$

 n^2 &- n^2 and +6 & -6 get cancle

$$\deg(\mathbf{U}) + \deg(\mathbf{V}) \ge \frac{1}{2} \times 2n$$

 $deg(U)+deg(V) \ge n$

 $\dot{\cdot}$ given graph has Hamiltonian Circuit

Hence theorem is proved.

(B) Define partial order set, chain , lexicographic , Isomorphism and show that the function $f:A \rightarrow A'$ define by f(a)=2(a) is an isomorphism from $(A \le)$ to

 $(A' \leq)$ where A is a set of positive integers , A' is a set of positive even integers.

Solution:

partial order set :

Let A is a relation or set A .then relation R is called partial order. If it is reflexive, antisymentric and transitive.

If R is a partial order relation on set A. then set A together with partial order relation R is know as partial order set or partial order set.

Ex. Let Z be a set f integers " \leq " be a relation on Z.

 \therefore Reflexive property is satisfied.

 $(\therefore_{a \leq a} \forall_{a \in Z})$

Let $a, b_{\in} z$

 $a \le b$ and $b \le a _ a=b$

. Antisymmentric property is satisfied

 $a \le b$ and $b \le c \Rightarrow a \le c$

. Transitive property is satiesfide.

."≤" is a partial oreder relation on Z

Similarly ">>"is also a partial oreder relation on Z.

Chain order set:

If every pair of element in a poset is comparable than poset A is called linear order set .Or set A is chain .

Ex. $A=\{a,b,c\}$ b O $a \le c, c \le b$ ca

This order is in linear or chain.

Hence it is called chain or linear orderd.

Lexicographic:

Let A×B is a cartesion product of two sets A &B .we define "<" as follow.

(a b) < (a' b') if a< a' or if a=a' then b< b'

This is used in dictionary.

Hence it is also as dictionary

Ex. Help, help

Help< help

Isomorphism:

Let $(A \leq)$ and $(A' \leq')$ be posets and let f: A \rightarrow A!be a one-to-one correspondence between f: A & A! The function f is called an Isomorphism from A to A'

It for any a, b \in A, a \leq b

 \Leftrightarrow f(a) \leq ' a(b).

(Proof left)

(c) Define bounded lattice, distributives lattice, complemented lattice, modular lattice and prove that if L is a bounded distributive lattice then if complement exists, it is unique.

Solution:

(D) For Boolean polynomial

 $\mathbf{P}(\mathbf{x},\mathbf{y},\mathbf{z}) = (\mathbf{x} \land \mathbf{y}) \lor (\mathbf{y} \land \mathbf{z})$

Contrast truth table and show the polynomial by logic diagram.