

Mohgaon, Wardha Road, Nagpur - 441 108

-- An Autonomous Institute --



Department of Artificial Intelligence and Machine Learning

B.Tech.
Artificial Intelligence and Machine Learning

**Syllabus of Honors in Data Science** 

Considering

National Education Policy 2020

From **Academic Year 2025-26** 

# Scheme of Honors in Data Science

| Sr. | Course   | Course Title                                 | тл  | Contact Hours |   |      | Credits | Total Marks  |
|-----|----------|----------------------------------------------|-----|---------------|---|------|---------|--------------|
| No. | Code     | Course Title                                 | T/P | L             | P | Hrs. | Creans  | l otal Marks |
| 1   | BAI12308 | Introduction to Explainable AI (XAI)         | Т   | 3             | - | 3    | 3       | 100          |
| 2   | BAI12408 | Fundamentals of Exploratory Data<br>Analysis | Т   | 3             | - | 3    | 3       | 100          |
| 3   | BAI13511 | Introduction to Computational Complexity     | Т   | 3             | - | 3    | 3       | 100          |
| 4   | BAI13613 | Data Analytics with Python                   | Т   | 3             | - | 3    | 3       | 100          |
| 5   | BAI14707 | Advance machine learning                     | Т   | 3             | - | 3    | 3       | 100          |
| 6   | BAI14809 | Capstone Project in Data Science             | Т   | 3             | - | 3    | 3       | 100          |
|     |          | Total                                        | -   | 18            | 8 | 18   | 18      | 600          |



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

#### Second Year (Semester-III) B. Tech. Artificial Intelligence and Machine Learning

| <b>Teaching Scheme</b> |          | ing Scheme                                                                                                                                                                   |                                                                                                                                     | Examin        | nation Scheme       |  |  |  |
|------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|--|--|--|
| Th                     | neory    | 3 Hrs./wk.                                                                                                                                                                   | C 1 DAT12200                                                                                                                        | CT-I          | 15 Marks            |  |  |  |
| Tu                     | torial   | -                                                                                                                                                                            | Course code: BAI12308 Course Name: - Introduction to                                                                                | CT-II         | 15 Marks            |  |  |  |
| Total                  | Credits  | 3                                                                                                                                                                            | Explainable AI (XAI)                                                                                                                | CA            | 10 Marks            |  |  |  |
| ,                      | Duration | of ESE: 3 Hrs.                                                                                                                                                               | Explanable III (2011)                                                                                                               | ESE           | 60 Marks            |  |  |  |
|                        | Duration | of ESE. 5 IIIs.                                                                                                                                                              |                                                                                                                                     | Total         | 100 Marks           |  |  |  |
| Co                     | urse Obj | ectives:                                                                                                                                                                     |                                                                                                                                     |               |                     |  |  |  |
| 1                      | Unders   | tand the importance                                                                                                                                                          | of explain ability in AI and its impact on s                                                                                        | stakeholders  | S.                  |  |  |  |
| 2                      | Explore  | e different technique                                                                                                                                                        | s and methods for making AI systems expl                                                                                            | ainable.      |                     |  |  |  |
| 3                      | Analyzo  | e the trade-offs betw                                                                                                                                                        | een model complexity and interpretability.                                                                                          |               |                     |  |  |  |
| 4                      | Examin   | e the ethical and so                                                                                                                                                         | cietal implications of XAI.                                                                                                         |               |                     |  |  |  |
| 5                      | Apply 2  | XAI techniques to re                                                                                                                                                         | al-world datasets and scenarios.                                                                                                    |               |                     |  |  |  |
|                        |          |                                                                                                                                                                              | <b>Course Contents</b>                                                                                                              |               |                     |  |  |  |
|                        |          | Introduction to Ex                                                                                                                                                           | xplainable AI (XAI): Motivations for XAI                                                                                            | Importance    | of interpretability |  |  |  |
|                        |          | and transparency Techniques for XAI, Model-specific interpretability methods (e.g.,                                                                                          |                                                                                                                                     |               |                     |  |  |  |
| U                      | Init I   | decision trees, rule- based systems) Model-agnostic interpretability methods (e.g., LIME,                                                                                    |                                                                                                                                     |               |                     |  |  |  |
|                        |          | SHAP) Post-hoc explanation techniques (e.g., feature importance, counterfactual explanation                                                                                  |                                                                                                                                     |               |                     |  |  |  |
|                        |          | Interpretable Models: Linear models, Decision trees and rule-based systems Symbolic AI                                                                                       |                                                                                                                                     |               |                     |  |  |  |
| U                      | nit II   | approaches, Interpretable Neural Networks, Sparse neural networks, Attention mechanisms, Layer-wise relevance propagation (LRP).                                             |                                                                                                                                     |               |                     |  |  |  |
|                        |          |                                                                                                                                                                              |                                                                                                                                     | ternretahilit | y Human-centric     |  |  |  |
| Uı                     | nit III  | <b>Evaluation of XAI Methods:</b> Quantitative metrics for interpretability, Human-centric evaluation methods, Ethical and Societal Implications of XAIB, is and fairness in |                                                                                                                                     |               |                     |  |  |  |
|                        |          | interpretable AI, Trust and accountability in AI systems, Regulatory considerations.                                                                                         |                                                                                                                                     |               |                     |  |  |  |
|                        |          |                                                                                                                                                                              | AI Methods: Quantitative metrics for in                                                                                             |               |                     |  |  |  |
| Uı                     | nit IV   |                                                                                                                                                                              | ds, Ethical and Societal Implications of XAI Bias and fairness in Frust and accountability in AI systems Regulatory considerations. |               |                     |  |  |  |
|                        |          | Applications of                                                                                                                                                              | <b>XAI:</b> Healthcare (e.g., medical                                                                                               |               | osis, personalized  |  |  |  |
| U                      | nit V    | treatment) Finance (e.g., credit scoring, fraud detection), Autonomous systems (e.g., self-                                                                                  |                                                                                                                                     |               |                     |  |  |  |
|                        |          | driving cars, drone                                                                                                                                                          | · ·                                                                                                                                 |               |                     |  |  |  |

#### **Text Books**

| T.1      | "Interpretable Machine Learning" by Christoph Molnar                                      |  |  |  |
|----------|-------------------------------------------------------------------------------------------|--|--|--|
| T.2      | "Explainable AI: Interpreting, Explaining and Visualizing Deep Learning" by L. Liu and G. |  |  |  |
|          | Hu                                                                                        |  |  |  |
| T.3      | Research papers and articles from relevant conferences and journals (e.g., NeurIPS, ICML, |  |  |  |
|          | AAAI)                                                                                     |  |  |  |
| Referen  | ice Books                                                                                 |  |  |  |
| R.1      | "Interpretable Machine Learning: A Guide for Making Black Box Models Explainable" by      |  |  |  |
| 1.1      | Christoph Molnar                                                                          |  |  |  |
| R.2      | "Explainable AI: Interpreting, Explaining and Visualizing Deep Learning" by L. Liu and G. |  |  |  |
| K.2      | Hu                                                                                        |  |  |  |
| R.3      | "Explainable AI in Healthcare: Exploring Interpretable Models and Learning from Patient   |  |  |  |
| K.3      | Data" edited by F. E. Elsayed and B. G. Stoecklin                                         |  |  |  |
| Useful l | Links                                                                                     |  |  |  |
| 1        | https://christophm.github.io/interpretable-ml-book                                        |  |  |  |
| 2        | https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0085                        |  |  |  |
| 3        | https://arxiv.org/abs/1812.02953                                                          |  |  |  |

|     | Course Outcomes                                                                                                        | CL | Class<br>Session |
|-----|------------------------------------------------------------------------------------------------------------------------|----|------------------|
| CO1 | <b>Understand</b> the core motivations behind the need for explainability in AI systems                                | 2  | 9                |
| CO2 | Evaluate trade-offs between model complexity and interpretability.                                                     | 5  | 9                |
| CO3 | <b>Design</b> human-centric evaluations (e.g., user studies) to test how understandable a model's output is to humans. | 6  | 9                |
| CO4 | <b>Integrate</b> regulatory and legal considerations into the development and deployment of AI systems.                | 3  | 9                |
| CO5 | <b>Apply</b> XAI methods to real-world domains like healthcare, finance, and autonomous systems.                       | 3  | 9                |



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

| Second Year (Se | emester – IV) | B.Tech. Artificial | <b>Intelligence and</b> | <b>Machine Learning</b> |
|-----------------|---------------|--------------------|-------------------------|-------------------------|
|                 |               |                    | 9                       |                         |

|               |            | car (Bellieste                                                                                                                                                                                                                                                                                                                      | 1 17) B. Teen. Millietai Intelligen                                                                                                                                                                                                                                                     |                    |                       |  |  |  |
|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--|--|--|
|               |            | Scheme                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                    | ation Scheme          |  |  |  |
| Theory        |            | 3 Hrs./wk.                                                                                                                                                                                                                                                                                                                          | Course Code: BAI12408                                                                                                                                                                                                                                                                   | CT-1               | 15 Marks              |  |  |  |
| Tutorial      |            | -                                                                                                                                                                                                                                                                                                                                   | Course Name: Fundamentals of                                                                                                                                                                                                                                                            | CT-2               | 15 Marks              |  |  |  |
| Total Credits |            | 3                                                                                                                                                                                                                                                                                                                                   | Exploratory Data Analysis                                                                                                                                                                                                                                                               | CA                 | 10 Marks              |  |  |  |
| D             | uration of | ESE: 3 Hrs.                                                                                                                                                                                                                                                                                                                         | Exploratory Data Allarysis                                                                                                                                                                                                                                                              | ESE<br>Total       | 60 Marks<br>100 Marks |  |  |  |
| Cours         | e Object   | ive:                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         | l .                |                       |  |  |  |
| 1             | •          |                                                                                                                                                                                                                                                                                                                                     | of exploratory data analysis.                                                                                                                                                                                                                                                           |                    |                       |  |  |  |
| 2             |            |                                                                                                                                                                                                                                                                                                                                     | alization using Matplotlib.                                                                                                                                                                                                                                                             |                    |                       |  |  |  |
| 3             | _          |                                                                                                                                                                                                                                                                                                                                     | ata exploration and analysis                                                                                                                                                                                                                                                            |                    |                       |  |  |  |
| 4             | -          |                                                                                                                                                                                                                                                                                                                                     | exploration and analysis                                                                                                                                                                                                                                                                |                    |                       |  |  |  |
| 5             |            | <u> </u>                                                                                                                                                                                                                                                                                                                            | and visualization techniques for multivaria                                                                                                                                                                                                                                             | ate and time serie | es data.              |  |  |  |
|               |            | 1                                                                                                                                                                                                                                                                                                                                   | Course Contents                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| Unit I        |            | Significance<br>analysis – So<br>merging data                                                                                                                                                                                                                                                                                       | y <b>Data Analysis</b> : EDA fundamentals – Understanding data science – of EDA – Making sense of data – Comparing EDA with classical and Bayesian oftware tools for EDA - Visual Aids for EDA- Data transformation techniquesabase, reshaping and pivoting, Transformation techniques. |                    |                       |  |  |  |
| Unit II       |            | <b>EDA Using Python:</b> Data Manipulation using Pandas – Pandas Objects – Data Indexing and Selection – Operating on Data – Handling Missing Data – Hierarchical Indexing – Combining datasets – Concat, Append, Merge and Join – Aggregation and grouping – Pivot Tables – Vectorized String Operations.                          |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| Un            | nit III    | Univariate Analysis: Introduction to Single variable: Distribution Variables - Numerical Summaries of Level and Spread - Scaling and Standardizing – Inequality.                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| Un            | nit IV     | <b>Bivariate Analysis</b> : Relationships between Two Variables - Percentage Tables - Analysing Contingency Tables - Handling Several Batches - Scatterplots and Resistant Lines.                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| Unit V        |            | Case study 1: Customer Churn Prediction Using Multivariate Analysis. Case study 2: Impact of Advertising Spend on Sales Across Regions. Case study 3: Time Series Forecasting for Electricity Demand. Case study 4: Retail Sales Analysis Using Grouping & Resampling. Case study 5: Stock Market Trend Analysis Using Time Series. |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| Text          | Books      |                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                       |                    |                       |  |  |  |
| T.1           |            | Suresh Kumar Mukhiya, Usman Ahmed, "Hands - On Exploratory Data Analysis with Python", Packt Publishing, 2020.                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| T.2           |            | Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", First Edition, O Reilly, 2017.                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
| T.3           |            |                                                                                                                                                                                                                                                                                                                                     | erine Marsh, Jane Elliott, "Exploring Data: An Introduction to Data Analysis for Social tists", Wiley Publications, 2nd Edition, 2008.                                                                                                                                                  |                    |                       |  |  |  |
| Refer         | rence Bo   | oks                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |
|               |            |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                    |                       |  |  |  |

| R.1      | Eric Pimpler, Data Visualization and Exploration with R, GeoSpatial Training service, 2017.                                                                     |  |   |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|--|--|
| R.2      | Claus O. Wilke, "Fundamentals of Data Visualization", O'reilly publications, 2019                                                                               |  |   |  |  |
| R.3      | R.3 Matthew O. Ward, Georges Grinstein, Daniel Keim, "Interactive Data Visualization: Foundations, Techniques, and Applications", 2nd Edition, CRC press, 2015. |  |   |  |  |
| Useful L | inks                                                                                                                                                            |  |   |  |  |
| 1        | https://www.bing.com/videos/riverview/relatedvideo?&q=Exploratory+Data+Analysis+N<br>EL+Course&∣=8917A8B3C2F3429EFA538917A8B3C2F3429EFA53&&FORM=V<br>GAR        |  |   |  |  |
| 2        | https://www.bing.com/videos/riverview/relatedvideo?q=Exploratory%20Data%20Analy<br>2                                                                            |  |   |  |  |
|          | Course Outcomes CL Class Sessio                                                                                                                                 |  |   |  |  |
| 1        | Understand the fundamentals of exploratory data analysis. 2                                                                                                     |  | 9 |  |  |
| 2        | <b>Implement</b> the data visualization using Matplotlib. 3 9                                                                                                   |  |   |  |  |
| 3        | 3 Perform univariate data exploration and analysis. 3 9                                                                                                         |  | 9 |  |  |
| 4        | Apply bivariate data exploration and analysis.39                                                                                                                |  |   |  |  |
| 5        | Use Data exploration and visualization techniques for multivariate and time series data.  3                                                                     |  |   |  |  |



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

|                                                                                                                                                                                                                                 | IIIIu   | Teal (Semeste                                                              | er – v) B. Fech. Artificial Intelligence                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and Macini                                   | ne Learning                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|--|--|
|                                                                                                                                                                                                                                 | Teachi  | ng Scheme                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exami                                        | nation Scheme                       |  |  |
| Theory                                                                                                                                                                                                                          |         | 3 Hrs./wk.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CT-1                                         | 15 Marks                            |  |  |
| Tutorial Total Credits                                                                                                                                                                                                          |         | -                                                                          | - Course Code: BAI13511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | 15 Marks                            |  |  |
|                                                                                                                                                                                                                                 |         | 3                                                                          | Course Name: Introduction to<br>Computational Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA                                           | 10 Marks                            |  |  |
| ,                                                                                                                                                                                                                               |         |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ESE                                          | 60 Marks                            |  |  |
| D                                                                                                                                                                                                                               | uration | of ESE: 3 Hrs.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                        | 100 Marks                           |  |  |
| Cours                                                                                                                                                                                                                           | se Obje |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                     |  |  |
| 1                                                                                                                                                                                                                               |         | stand key concer<br>chy, and the P vs                                      | ots in computational complexity, including NNP problem.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IP-completen                                 | ess, time and space                 |  |  |
| 2                                                                                                                                                                                                                               | Expla   | in advanced space                                                          | e complexity classes and key theorems in com                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | putational cor                               | nplexity theory.                    |  |  |
| 3                                                                                                                                                                                                                               | Introd  | uce concepts of ra                                                         | andomized and nonuniform computation, inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ding BPP and                                 | circuit complexity.                 |  |  |
| 4                                                                                                                                                                                                                               | _       | re advanced comp                                                           | plexity theory topics including circuit comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xity, randomi                                | zed algorithms, and                 |  |  |
| 5                                                                                                                                                                                                                               | _       | •                                                                          | s and concepts in computational complexity, ir on complexity, and interactive proofs.                                                                                                                                                                                                                                                                                                                                                                                                                            | ncluding Valia                               | nt-Vazirani, Toda's                 |  |  |
|                                                                                                                                                                                                                                 |         |                                                                            | <b>Course Contents</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                     |  |  |
| Unit I                                                                                                                                                                                                                          |         | certificate comp                                                           | sion problems, Karp/Turing reductions, completeness, NP structure: verifiers, witnesses, ficate complexity, Origins of NP-completeness and hardness notions, Diagonalization dations for hierarchy theorems, Introduction to Space Complexity; basic class inclusions (L $\subseteq P \subseteq NP$ )                                                                                                                                                                                                            |                                              |                                     |  |  |
| Unit II: Spanondeterminist configurations, Complete prob                                                                                                                                                                        |         | Unit II: Space<br>nondeterministic<br>configurations, I<br>Complete proble | ce Complexity and Relativization-Savitor space, Space constructibility and SPACE(f(ralog-space reductions, NL-completeness; NL-ems (QBF, games), Space Hierarchy Theorem and its implication                                                                                                                                                                                                                                                                                                                     | n)), NL machi<br>= coNL, PSP<br>em, Oracle T | nes: log-space TMs, ACE and PSPACE- |  |  |
| Unit III                                                                                                                                                                                                                        |         | BPP, ZPP, Propseudorandom<br>Theorem), None<br>Complexity: AC              | mization and Nonuniform Computation-Randomized complexity classes: RP, coRP, PP, Probabilistic Turing Machines, error reduction, amplification, Derandomization, random generators, BPP in the Polynomial Hierarchy (Sipser–Gács–Lautemann m), Nonuniform computation: P/poly, advice strings, cryptographic relevance, Circuit exity: AC <sup>0</sup> , AC <sup>k</sup> , NC, TC classes, Circuit size/depth, uniformity vs nonuniformity, Lower echniques: combinatorial, diagonalization, communication-based |                                              |                                     |  |  |
| Unit IV  Lower Bounds, Algebraic Complexity & Counting Classes-Parity not is Lemma and random restrictions, Karp—Lipton Theorem and PH collapse implice Theorem: randomness within polynomial time, Polynomial Identity Testing |         |                                                                            | lications, Adleman's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                     |  |  |

|           | circuits, Schwarz–Zippel lemma, Isolation Lemma and randomized algorithms, Perfect Matching in RNC <sup>2</sup> ; NC vs RNC, Counting complexity: definition of #P, reductions, relationships, #P-Completeness; Valiant's Theorem—Permanent is #P-Complete                                                                                                                                                                                          |          |    |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|--|--|--|
| Unit V    | Advanced Theorems, Communication & Interactive Proofs-Valiant—Vazirani Theorem (SAT → Unique-SAT), Toda's Theorem: PH ⊆ P^#P, Communication Complexity: deterministic, randomized, nondeterministic models; discrepancy, rank, fooling sets, Monotone computation: monotone circuits, lower bounds (matching, clique); Razborov's method, Interactive Proofs: IP vs PSPACE, verifier—prover model, relevance to cryptography (zero-knowledge, PCP). |          |    |  |  |  |
| Text Boo  | oks                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |  |  |  |
| T.1       | Computational Complexity, by Christos Papadimitriou                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |  |  |  |
| T.2       | Computational Complexity: A Modern Approach, by Sanjeev Arora and Bo                                                                                                                                                                                                                                                                                                                                                                                | az Barak | ζ. |  |  |  |
| T.3       | Introduction to the Theory of Computation by Michael Sipser                                                                                                                                                                                                                                                                                                                                                                                         |          |    |  |  |  |
| Reference | ce Books                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |  |  |  |
| R.1       | Sanjeev Arora and Boaz Barak, Computational Complexity: A ModernApproach, Cambridge University Press, Edition I, 2009                                                                                                                                                                                                                                                                                                                               |          |    |  |  |  |
| R.2       | O. Goldreich. Computational complexity: a conceptual perspective. Cambridge University Press, 2008                                                                                                                                                                                                                                                                                                                                                  |          |    |  |  |  |
| R.3       | O. Goldreich. P, NP, and NP-completeness. Cambridge University Press, 2010.                                                                                                                                                                                                                                                                                                                                                                         |          |    |  |  |  |
| Useful L  | inks                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |  |  |  |
| 1         | Computational Complexity - Course                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |  |  |  |
| 2         | NOC:Computational Complexity Theory NPTEL Course - Free Practice Questions & Materials   NPTELPrep                                                                                                                                                                                                                                                                                                                                                  |          |    |  |  |  |
|           | Course Outcomes CL Classic Session                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    |  |  |  |
| 1         | <b>Interpret</b> key concepts in computational complexity, including NP-completeness, P vs NP, and space complexity.                                                                                                                                                                                                                                                                                                                                | 2        | 9  |  |  |  |
| 2         | <b>Describe</b> key results and theorems in space complexity, including NL-completeness, PSPACE-completeness, and space hierarchy.                                                                                                                                                                                                                                                                                                                  |          |    |  |  |  |
| 3         | Apply the concepts of randomized and nonuniform computation, including BPP and circuit complexity.                                                                                                                                                                                                                                                                                                                                                  |          |    |  |  |  |
| 4         | Recognize key results in computational complexity, including circuit lower bounds, randomized algorithms, and #P-completeness.                                                                                                                                                                                                                                                                                                                      |          |    |  |  |  |
| 5         | <b>Demonstrate</b> key complexity theorems and models, including Valiant-Vazirani, Toda's Theorem, communication complexity, and interactive proofs.                                                                                                                                                                                                                                                                                                | 3        | 9  |  |  |  |



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

| Third Year (Semester – VI) B.Tech. Artificial Intelligence and Machine Learning |                |                                         |         |             |
|---------------------------------------------------------------------------------|----------------|-----------------------------------------|---------|-------------|
| Teaching Scheme                                                                 |                |                                         | Examina | tion Scheme |
| Theory                                                                          | 3 Hrs./wk.     |                                         | CT-1    | 15 Marks    |
| Tutorial                                                                        | -              | Course Code: BAI13613                   | CT-2    | 15 Marks    |
| Total Credits                                                                   | 3              | Course Name: Data Analytics with Python | CA      | 10 Marks    |
| Duration of ESE : 3 Hrs.                                                        |                |                                         | ESE     | 60 Marks    |
| Duration o                                                                      | I ESE : 3 Hrs. |                                         | Total   | 100 Marks   |
| Course Objective:                                                               |                |                                         |         |             |

| 1 | <b>Understand</b> foundational concepts of data analytics using Python, including probability, sampling, and distributions. |
|---|-----------------------------------------------------------------------------------------------------------------------------|
| 2 | Apply hypothesis testing, two-sample comparisons, and ANOVA for statistical decision-making.                                |
| 3 | <b>Analyse</b> regression techniques and statistical inference methods, including MLE, linear, and logistic regression.     |
| 4 | Evaluate regression models using ROC curves, chi-square tests, and clustering fundamentals.                                 |
| 5 | <b>Develop</b> practical skills in clustering and decision tree techniques for classification and regression tasks.         |
|   | Course Contents                                                                                                             |

| Course Contents |                                                                                                                          |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Unit I          | Introduction to data analytics and Python fundamentals, Introduction to probability, Sampling and sampling distributions |  |  |  |  |
| Unit II         | Hypothesis testing, two sample testing and introduction to ANOVA                                                         |  |  |  |  |
| Unit III        | Two-way ANOVA and linear regression, Linear regression and multiple regression, Concepts of MLE and Logistic regression  |  |  |  |  |

| Unit I    | ROC and Regression Analysis Model Building, c <sup>2</sup> Test and introduction to cluster analysis                                                                       |           |          |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--|--|--|--|
| Unit '    | Clustering analysis, Classification and Regression Trees (CART)                                                                                                            |           |          |  |  |  |  |
| Text Boo  | Text Books                                                                                                                                                                 |           |          |  |  |  |  |
| T.1       | McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. "O'Reilly Media, Inc.".                                                     |           |          |  |  |  |  |
| T.2       | Swaroop, C. H. (2003). A Byte of Python. Python Tutorial.                                                                                                                  |           |          |  |  |  |  |
| T.3       | Ken Black, sixth Editing. Business Statistics for Contemporary Decision Wiley & Sons, Inc".                                                                                | Making.   | "John    |  |  |  |  |
| Reference | e Books                                                                                                                                                                    |           |          |  |  |  |  |
| R.1       | Anderson Sweeney Williams (2011). Statistics for Business and Econom Learning".                                                                                            | ics. "Cen | igage    |  |  |  |  |
| R.2       | Douglas C. Montgomery, George C. Runger (2002). Applied Statistics & Engineering. "John Wiley & Sons, Inc"                                                                 | Probabi   | lity for |  |  |  |  |
| R.3       | Lay I. Dayara (2011) Probability and Statistics for Engineering and the Sciences "Congag                                                                                   |           |          |  |  |  |  |
| Useful L  | inks                                                                                                                                                                       |           |          |  |  |  |  |
| 1         | Data Analytics with Python - Course                                                                                                                                        |           |          |  |  |  |  |
| 2         | https://www.bing.com/videos/riverview/relatedvideo?q=data+analytics+with+python+nptel+ourse+syllabus∣=FA6630CBDBA601BAE8BCFA6630CBDBA601BAE8BC&FORM=VIRE                   |           |          |  |  |  |  |
|           | Course Outcomes                                                                                                                                                            |           |          |  |  |  |  |
| 1         | <b>Understand</b> the fundamentals of data analytics using Python, along with basic concepts of probability, sampling, and sampling distributions.                         | 2         | 9        |  |  |  |  |
| 2         | <b>Apply</b> hypothesis testing, compare two sample data sets, and interpret results using ANOVA techniques.                                                               | 3         | 9        |  |  |  |  |
| 3         | Implement statistical modeling techniques such as ANOVA, regression (linear, multiple, logistic), and Maximum Likelihood Estimation (MLE) for data analysis and inference. |           |          |  |  |  |  |
| 4         | <b>Execute</b> ROC analysis, regression modeling, Chi-square tests, and basic clustering techniques for data-driven decision-making.                                       |           |          |  |  |  |  |
| 5         | <b>Employ</b> clustering and decision tree techniques such as CART for effective data classification and regression analysis.                                              |           |          |  |  |  |  |



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

#### Fourth Year (Semester – VII) B.Tech. Artificial Intelligence and Machine Learning

| <b>T</b>                                                                    | 1.                                                                                                                                                                         | <u> </u>                                                                                                                                                                       | ,                                                                                | T                  | 0.1           |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|---------------|--|--|--|
| Teaching Scheme Theory 3 Hrs./wk. Tutorial -                                |                                                                                                                                                                            |                                                                                                                                                                                |                                                                                  | Examination Scheme |               |  |  |  |
|                                                                             |                                                                                                                                                                            | 3 Hrs./wk.                                                                                                                                                                     | Course Code: BAI14707                                                            | CT-1               | 15 Marks      |  |  |  |
|                                                                             |                                                                                                                                                                            | -                                                                                                                                                                              | Course Name: Advance machine                                                     | CT-2               | 15 Marks      |  |  |  |
| Total Cre                                                                   | Total Credits 3                                                                                                                                                            |                                                                                                                                                                                | learning                                                                         | CA                 | 10 Marks      |  |  |  |
| D                                                                           | .4                                                                                                                                                                         | PECE. 2 II                                                                                                                                                                     | icai ming                                                                        | ESE                | 60 Marks      |  |  |  |
| Dura                                                                        | ttion of                                                                                                                                                                   | f ESE: 3 Hrs.                                                                                                                                                                  |                                                                                  | Total              | 100 Marks     |  |  |  |
| Course (                                                                    | Objec                                                                                                                                                                      | etive:                                                                                                                                                                         |                                                                                  |                    |               |  |  |  |
| 1 1                                                                         | To Pro                                                                                                                                                                     | vide advanced                                                                                                                                                                  | theoretical understanding of modern machine lear                                 | ning paradigm      | s, including  |  |  |  |
| r                                                                           |                                                                                                                                                                            |                                                                                                                                                                                | g, probabilistic modeling, and optimization strategie                            |                    |               |  |  |  |
| , ,                                                                         |                                                                                                                                                                            |                                                                                                                                                                                | to implement and experiment with cutting-edge M                                  | -                  | such as self- |  |  |  |
| S                                                                           |                                                                                                                                                                            |                                                                                                                                                                                | raph learning, meta-learning, and generative models                              |                    |               |  |  |  |
| 1 1                                                                         |                                                                                                                                                                            |                                                                                                                                                                                | in designing scalable and efficient ML systems                                   | using distribut    | ted training, |  |  |  |
|                                                                             |                                                                                                                                                                            |                                                                                                                                                                                | nd hardware-aware optimization.                                                  | 1                  | MI 1.1.       |  |  |  |
| 4                                                                           |                                                                                                                                                                            | •                                                                                                                                                                              | kills to assess robustness, fairness, interpretability, a evaluation frameworks. | and security of    | ML models     |  |  |  |
| 7                                                                           |                                                                                                                                                                            |                                                                                                                                                                                | ole AI development by integrating ethical principles                             | s governance f     | frameworks    |  |  |  |
| 1 7 I                                                                       |                                                                                                                                                                            | -                                                                                                                                                                              | nent of deployed ML systems.                                                     | s, governance i    | ranic works,  |  |  |  |
|                                                                             | ina me                                                                                                                                                                     | eyere managen                                                                                                                                                                  | Course Contents                                                                  |                    |               |  |  |  |
|                                                                             | Adv                                                                                                                                                                        | anced Optimiz                                                                                                                                                                  |                                                                                  | Optimization       | . Advanced    |  |  |  |
|                                                                             |                                                                                                                                                                            | Advanced Optimization Techniques in ML-Convex vs Non-Convex Optimization, Advanced Gradient Methods: Adam, RMSProp, AdaGrad, AMSGrad, Second-order & Quasi-Newton              |                                                                                  |                    |               |  |  |  |
| Unit I                                                                      |                                                                                                                                                                            | Methods: L-BFGS, Natural Gradient, Optimization on Manifolds; Trust-Region Methods,                                                                                            |                                                                                  |                    |               |  |  |  |
|                                                                             | Training Stability, Gradient Clipping, Learning Rate Scheduling, Large-scale/Distributed                                                                                   |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             | Opti                                                                                                                                                                       | mization: Data                                                                                                                                                                 | Parallelism, Model Parallelism.                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            |                                                                                                                                                                                |                                                                                  | epresentation      | Learning      |  |  |  |
| Unit II                                                                     | Fundamentals, Autoencoders: Variants (Denoising, Sparse, Contractive), Self-Supervised Pretext                                                                             |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
| 0 1110 11                                                                   | Tasks (contrastive learning, masked modeling), Contrastive Learning Methods: SimCLR, MoCo,                                                                                 |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            | BYOL, Metric Learning: Triplet Loss, Siamese Networks, Foundation Models & Pretraining Paradigms                                                                               |                                                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            |                                                                                                                                                                                | Lagraina & Congretive Models Variational Inf                                     | oranga & Day       | racian Doon   |  |  |  |
| Unit III                                                                    | Probabilistic Deep Learning & Generative Models, Variational Inference & Bayesian Deep Learning, Variational Autoencoders (VAE) – Theory & Applications, Normalizing Flows |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             | (RealNVP, Glow), Generative Adversarial Networks (GANs): DCGAN, WGAN, CycleGAN,                                                                                            |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            | Diffusion Models: Score-based generative modeling, Uncertainty Quantification in Deep Models                                                                                   |                                                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            |                                                                                                                                                                                | e & Graph-based Learning, Transformer Architect                                  |                    |               |  |  |  |
| Unit IV                                                                     | Head Attention, Large Language Models (LLMs): Training Pipeline & Tokenization, Graph                                                                                      |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             | Machine Learning: GNNs, GCN, GAT, Message-Passing Networks, Temporal Models: Temporal                                                                                      |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
| Convolution, Neural ODEs, Multimodal Learning: Vision–Language Models (CLIP |                                                                                                                                                                            |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             | Causal, Ethical & Trustworthy Machine Learning- Causal ML: Structural Causal Models,                                                                                       |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
| Unit V                                                                      | Counterfactuals, Do-Calculus, Causal Inference Methods: Propensity Scoring, IV Methods,                                                                                    |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             | CATE, Uplift Models, Explainability: SHAP, LIME, Integrated Gradients, Counterfactual                                                                                      |                                                                                                                                                                                |                                                                                  |                    |               |  |  |  |
|                                                                             |                                                                                                                                                                            | Explanations, Fairness in ML: Bias Metrics, Mitigation Techniques, Adversarial ML: FGSM, PGD, Robust Training, ML Security, Privacy, Federated Learning & Differential Privacy |                                                                                  |                    |               |  |  |  |
|                                                                             | PGL                                                                                                                                                                        | ), Kobust Train                                                                                                                                                                | ing, ML Security, Privacy, Federated Learning & L                                | interential Priv   | vacy          |  |  |  |

| Text Bo          | ooks                                                                                                                                                                     |              |                  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--|--|
| T.1              | Satyajit Das, Bharatkumar Sharma, "Applied Accelerated Artificial Intelligence" (NPTEL video                                                                             |              |                  |  |  |
| 1.1              | series & lecture notes), IIT Palakkad/IIT Goa, 2022.                                                                                                                     |              |                  |  |  |
| T.2              | Vini Madhavan, John Owens, "Programming Massively Parallel Processors: A Hands-on                                                                                        |              |                  |  |  |
|                  | Approach", 4th Ed., Morgan Kaufmann, 2022.                                                                                                                               |              |                  |  |  |
| T.3              | RAPIDS & Nvidia Docs, "RAPIDS AI User Documentation", Nvidia, latest or                                                                                                  | nline editio | n.               |  |  |
| Referer          | nce Books                                                                                                                                                                |              |                  |  |  |
| R.1              | R.1 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras &                                                                                                | & TensorFl   | ow", 3rd         |  |  |
|                  | Ed., O'Reilly, 2023.                                                                                                                                                     |              |                  |  |  |
| R.2              | R.2 Research and whitepapers from ACM Digital Library, NeurIPS, NVIDIA,                                                                                                  | and Open     | ACC.             |  |  |
|                  |                                                                                                                                                                          |              |                  |  |  |
| J <b>seful</b> 1 | Links                                                                                                                                                                    |              |                  |  |  |
| 1                | https://nptel.ac.in/courses/106106238                                                                                                                                    |              |                  |  |  |
| 2                | https://iitgoa.ac.in/aishikshaai/                                                                                                                                        |              |                  |  |  |
|                  | Course Outcomes                                                                                                                                                          | CL           | Class<br>Session |  |  |
| 1                | <b>Analyze</b> advanced machine learning architectures and theoretical foundations including representation learning, probabilistic models, and optimization techniques. | 4            | 9                |  |  |
| 2                | <b>Apply</b> state-of-the-art ML methods such as self-supervised learning, contrastive learning, GNNs, and meta-learning to solve complex data-driven problems.          | 3            | 9                |  |  |
| 3                | <b>Design</b> scalable ML pipelines using distributed training, efficient model compression, and hardware-aware optimization for real-world deployment.                  | 6            | 9                |  |  |
| 4                | <b>Evaluate</b> model robustness, fairness, interpretability, and security through modern frameworks such as adversarial evaluation and explainability metrics.          | 5            | 9                |  |  |
| _                | Create responsible and high-performance ML solutions that integrate                                                                                                      |              |                  |  |  |

ethical AI considerations, continuous monitoring, and compliance with

modern AI governance frameworks.

9

6

5



Wardha Road, Nagpur- 441 108 NAAC Accredited (A+ Grade)



(An Autonomous Institution Affiliated to RTM Nagpur University, Nagpur)

## Fourth Year (Semester – VIII) B.Tech. Artificial Intelligence and Machine Learning

| Tutorial - Total Credits 3  Duration of ESE: 3 Hrs.  Course Name: Capstone Project in Data Science  Duration of ESE: 3 Hrs.  Course Name: Capstone Project in Data Science  Duration of ESE: 3 Hrs.  Course Objective:  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Teaching Scheme</b>                                                         |         | ng Scheme                                                                              |                                                     | Examination          | Scheme      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|-------------|--|--|
| Course Name: Capstone Project in Data Science   Seminar 3   20 Mar   Seminar 4   20 Mar   Seminar 5   20 Mar   Total   100 Ma   Total   100 Ma   Seminar 5   20 Mar   Total   100 Ma   Seminar 6   20 Mar   Total   100 Ma   Seminar 7   20 Mar   Total   100 Ma   Seminar 8   20 Mar   Total   100 Ma   Seminar 9   20 Mar   Seminar 9   20 Mar   Seminar 10   20 Mar      | Theory                                                                         | y       | 3 Hrs./wk.                                                                             | C C 1 D 114000                                      | Seminar 1            | 20 Marks    |  |  |
| Duration of ESE: 3 Hrs.  Data Science    Seminar 4   20 Mar     Seminar 5   20 Mar     Total   100 Ma     Total   100 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |         | -                                                                                      |                                                     | Seminar 2            | 20 Marks    |  |  |
| Duration of ESE: 3 Hrs.    Seminar 5   20 Mar     Total   100 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |         | 3                                                                                      |                                                     | Seminar 3            | 20 Marks    |  |  |
| Course Objective:  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |         | •                                                                                      | Data Science                                        | Seminar 4            | 20 Marks    |  |  |
| Course Objective:   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dı                                                                             | uration | of ESE: 3 Hrs.                                                                         |                                                     | Seminar 5            | 20 Marks    |  |  |
| Imable students to identify, define, and scope real-life data science problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duration                                                                       |         |                                                                                        |                                                     | Total                | 100 Marks   |  |  |
| 2 Provide hands-on experience with the complete data science project lifecycle. 3 Strengthen team-based and independent project execution, communication, and analytical skills. 4 Encourage the application of advanced data science and AI techniques for real-world datasets. 5 Instill best practices in data handling, model validation, presentation, and reproducibility.  Course Contents  Problem Formulation and Planning: Identification of a real-world problem (indust research, societal), Literature survey and baseline analysis, Defining specific objectivoutcomes, and deliverables, Project planning: timelines, roles, and milestones  Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scrapinidustry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineering and data partitioning  Model Building and Validation: Selection and implementation of appropriate algorithm (supervised/unsupervised) Model training, parameter tuning, cross-validation Performating entrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST APICOUA, portable notebooks Communication: Deployment strategies: dashboards, REST APICOUA, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation: Final product demonstration (proof concept/prototype/to | Cours                                                                          | e Obje  | ective:                                                                                |                                                     |                      |             |  |  |
| 3 Strengthen team-based and independent project execution, communication, and analytical skills. 4 Encourage the application of advanced data science and AI techniques for real-world datasets. 5 Instill best practices in data handling, model validation, presentation, and reproducibility.  Course Contents  Problem Formulation and Planning: Identification of a real-world problem (indust research, societal), Literature survey and baseline analysis, Defining specific objectiv outcomes, and deliverables, Project planning: timelines, roles, and milestones  Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scraping industry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineering and data partitioning  Model Building and Validation: Selection and implementation of appropriate algorithm (supervised/unsupervised) Model training, parameter tuning, cross-validation Performangering, if appropriate  Seminar -4  Seminar -4  Seminar -4  Seminar -5  Seminar -5  Seminar -5  Seminar -5  Cathy Ortable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication of findings: technical report writing, presentation aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3 re Ed., O'Reilly, 2023.  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.    | 1                                                                              | Enabl   | e students to ider                                                                     | ntify, define, and scope real-life data science pro | blems.               |             |  |  |
| 4 Encourage the application of advanced data science and AI techniques for real-world datasets.  5 Instill best practices in data handling, model validation, presentation, and reproducibility.  Course Contents  Problem Formulation and Planning: Identification of a real-world problem (indust research, societal), Literature survey and baseline analysis, and milestones  Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scraping industry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineering and data partitioning  Model Building and Validation: Selection and implementation of appropriate algorith (supervised/unsupervised) Model training, parameter tuning, cross-validation Performan metrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST APICOUAL, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Reference Books                                                                                                                                                                                                                                                                          | 2                                                                              | Provid  | <b>le</b> hands-on expe                                                                | erience with the complete data science project li   | fecycle.             |             |  |  |
| Seminar -1   Problem Formulation and Planning: Identification of a real-world problem (indust research, societal), Literature survey and baseline analysis, Defining specific objective outcomes, and deliverables, Project planning: timelines, roles, and milestones outcomes, and deliverables, Project planning: timelines, roles, and milestones   Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scrapin industry/research datasets Data cleansing, handling missing data, transformations   Exploratory data analysis (EDA): visualization and statistical summaries Feature engineering and data partitioning   Model Building and Validation: Selection and implementation of appropriate algorith (supervised/unsupervised) Model training, parameter tuning, cross-validation Performan metrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate   Solution Deployment and Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment strategies: dashboards, REST APIC cloud, portable notebooks Communication: Deployment and Communication: Deployment and Communication   | 3                                                                              | Streng  | <b>then</b> team-based                                                                 | d and independent project execution, communic       | ation, and analytica | al skills.  |  |  |
| Seminar -1  Seminar -2  Seminar -3  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Solution Deployment and Communication: Peployment strategies: dashboards, REST AP  cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP  cloud, portable notebooks Communication: Deployment demonstration of proteotype topic portable notebooks Communication: Pinal product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons  | 4                                                                              | Encou   | rage the applica                                                                       | tion of advanced data science and AI techniques     | s for real-world dat | asets.      |  |  |
| Seminar -1 Seminar -2 Seminar -2 Seminar -3  | 5                                                                              | Instill | best practices in                                                                      | n data handling, model validation, presentation,    | and reproducibility  | <b>y</b> .  |  |  |
| Seminar -1  research, societal), Literature survey and baseline analysis, Defining specific objective outcomes, and deliverables, Project planning: timelines, roles, and milestones  Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scrapin industry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineeriand data partitioning  Model Building and Validation: Selection and implementation of appropriate algorith (supervised/unsupervised) Model training, parameter tuning, cross-validation Performar metrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentatio data visualization Ethical, privacy, societal consideration in deployment Collaboration a version control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| outcomes, and deliverables, Project planning: timelines, roles, and milestones  Data Acquisition, Preparation, and Exploration: Raw data acquisition: APIs, web scrapin industry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineering and data partitioning  Model Building and Validation: Selection and implementation of appropriate algorithm (supervised/unsupervised) Model training, parameter tuning, cross-validation Performant metrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST API cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  T.2 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |         |                                                                                        | <u>e</u>                                            | -                    | ,           |  |  |
| Seminar -2  Seminar -3  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Seminar -4  Seminar -5  Seminar -6  Seminar -7  Seminar -8  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication: Deployment of findings: technical report writing, presentation of process, results, and reproduciblity resources viva-voce and Q&A Reflection, lessons learned, | Semin                                                                          | nar -1  |                                                                                        |                                                     | <b>U</b> 1           | objectives, |  |  |
| Seminar -2  Seminar -3  Industry/research datasets Data cleansing, handling missing data, transformations Exploratory data analysis (EDA): visualization and statistical summaries Feature engineeric and data partitioning  Model Building and Validation: Selection and implementation of appropriate algorithm (supervised/unsupervised) Model training, parameter tuning, cross-validation Performance metrics, error analysis, iterative improvement Advanced topics: ensemble methods, declearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  T.2 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| Exploratory data analysis (EDA): visualization and statistical summaries Feature engineers and data partitioning  Model Building and Validation: Selection and implementation of appropriate algoriths (supervised/unsupervised) Model training, parameter tuning, cross-validation Performar metrics, error analysis, iterative improvement Advanced topics: ensemble methods, delearning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| seminar -3  Seminar -3  Seminar -3  Seminar -3  Seminar -3  Seminar -3  Seminar -4  Seminar -5  Seminar -6  Seminar -7  Seminar -7  Seminar -7  Seminar -8  Seminar -8  Seminar -8  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration a version control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1  Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                | Semin                                                                          | nar -2  |                                                                                        |                                                     |                      |             |  |  |
| Seminar -3  Model Building and Validation: Selection and implementation of appropriate algorithm (supervised/unsupervised) Model training, parameter tuning, cross-validation Performan metrics, error analysis, iterative improvement Advanced topics: ensemble methods, de learning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| Seminar -3  (supervised/unsupervised) Model training, parameter tuning, cross-validation Performar metrics, error analysis, iterative improvement Advanced topics: ensemble methods, de learning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentatio data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |         | •                                                                                      | -                                                   | tion of appropriate  | algorithms  |  |  |
| Seminar -3 metrics, error analysis, iterative improvement Advanced topics: ensemble methods, de learning, if appropriate  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration aversion control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g .                                                                            | 2       |                                                                                        |                                                     |                      |             |  |  |
| Seminar -4  Solution Deployment and Communication: Deployment strategies: dashboards, REST AP cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration as version control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  T.2 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Semin                                                                          | iar -3  | metrics, error analysis, iterative improvement Advanced topics: ensemble methods, deep |                                                     |                      |             |  |  |
| <ul> <li>Seminar -4 cloud, portable notebooks Communication of findings: technical report writing, presentation data visualization Ethical, privacy, societal consideration in deployment Collaboration as version control best practices</li> <li>Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&amp;A Reflection, lessons learned, and future scope</li> <li>Text Books</li> <li>T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.</li> <li>T.2 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras &amp; TensorFlow," 3rd Ed., O'Reilly, 2023.</li> <li>T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.</li> <li>Reference Books</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| data visualization Ethical, privacy, societal consideration in deployment Collaboration a version control best practices  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |         | Solution Deployment and Communication: Deployment strategies: dashboards, REST APIs,   |                                                     |                      |             |  |  |
| Seminar -5  Seminar -5  Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seminar -4                                                                     |         |                                                                                        |                                                     |                      |             |  |  |
| Final Demonstration and Documentation: Final product demonstration (proof concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| Seminar -5 concept/prototype/tool) Documentation of process, results, and reproducibility resources Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |         |                                                                                        | •                                                   | uat damanetration    | n (proof of |  |  |
| Viva-voce and Q&A Reflection, lessons learned, and future scope  Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seminar -5                                                                     |         |                                                                                        | 1                                                   |                      | <b>\1</b>   |  |  |
| Text Books  T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |         |                                                                                        |                                                     |                      |             |  |  |
| T.1 Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2014.  Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Text I                                                                         |         |                                                                                        |                                                     |                      |             |  |  |
| T.2 Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow," 3rd Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | 1.      |                                                                                        |                                                     |                      |             |  |  |
| T.2 Ed., O'Reilly, 2023.  T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFl |         |                                                                                        | Flow " 3rd                                          |                      |             |  |  |
| T.3 Joel Grus, "Data Science from Scratch," 2nd Ed., O'Reilly, 2019.  Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |         |                                                                                        | i, Reius & Telisoff                                 | low, 31d             |             |  |  |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.                                                                             |         |                                                                                        |                                                     |                      |             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                              |         |                                                                                        |                                                     |                      |             |  |  |
| Hadley Wickham & Garrett Grolemund, "R for Data Science," O'Reilly, 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | ī       |                                                                                        | & Garrett Grolemund, "R for Data Science," C        | O'Reilly, 2017.      |             |  |  |
| R.1 Radicy Wickham & Garrett Glotemund, K for Data Science, O Kerny, 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K                                                                              | .1      | <b>,</b>                                                                               | ,                                                   | <b>3</b> /           |             |  |  |

| R.2    | Research articles, datasets, and documentation from Kaggle/Data.gov, and open repositories.                   |       |                  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------|-------|------------------|--|--|
| Useful | Links                                                                                                         |       |                  |  |  |
| 1      | https://nptel.ac.in/courses/106106212 (NPTEL Data Science for Engine                                          | eers) |                  |  |  |
| 2      | https://www.kaggle.com/learn/overview                                                                         |       |                  |  |  |
|        | Course Outcomes                                                                                               | CL    | Class<br>Session |  |  |
| 1      | <b>Understand</b> problem identification and precise project definition in data science.                      | 2     | 9                |  |  |
| 2      | <b>Apply</b> end-to-end data science practices on real-world or research datasets.                            | 4     | 9                |  |  |
| 3      | <b>Analyze</b> and report results, using state-of-the-art tools, models, and evaluation metrics.              | 3     | 9                |  |  |
| 4      | <b>Evaluate</b> and communicate outcomes via presentations, technical documentation, and live demonstrations. | 5     | 9                |  |  |
| 5      | <b>Design</b> and deliver a functional prototype/solution addressing a significant data science challenge.    | 4     | 9                |  |  |