

DEPARTMENT OF AERONAUTICAL ENGINEERING

Teaching Scheme & Syllabus (As per NEP_2020)

SCHEME OF INSTRUCTION & SYLLABI

Semester -Fifth

Programme: Aeronautical Engineering

From

Academic Year 2025-26

C

TULSIRAMJI GAIKWAD-PATIL COLLEGE OF ENGINEERING & TECHNOLOGY Wardha Road, Nagpur - 441108

Accredited with NAAC A+ Grade Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Institute Vision & Mission

Vision:

• To emerge as a learning Center of Excellence in the National Ethos in domains of Science, Technology and Management.

Mission:

- To strive for rearing standard and stature of the students by practicing high standards of professional ethics, transparency and accountability.
- To provide facilities and services to meet the challenges of Industry and Society.
- To facilitate socially responsive research, innovation and entrepreneurship.
- To ascertain holistic development of the students and staff members by inculcating knowledge and profession as work practices.

Program Outcomes (POs)

- 1. Engineering Knowledge
- 2. Problem Analysis
- 3. Design/development of solutions
- 4. Conduct investigations of complex problems
- 5. Modern tool usage
- 6. The engineer and society
- 7. Environment and sustainability
- 8. Ethics
- 9. Individual and team work
- 10. Communication
- 11. Project management and finance
- 12. Lifelong learning

C

TULSIRAMJI GAIKWAD-PATIL COLLEGE OF ENGINEERING & TECHNOLOGY Wardha Road, Nagpur - 441108

Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department Vision & Mission

Vision:

• To foster technically skilled Aeronautical Engineers of the utmost academic principles, to convene the needs of academia, industry and society.

Mission:

- Impart quality technical education and unique interdisciplinary experiences.
- Develop the analytical, computational and design capabilities to provide sustainable solutions.
- Expose the students to the current trends and opportunities in the Aerospace industry.
- Inculcate professional responsibility based on an innate ethical value system.

Program Educational Objectives (PEOs)

- 1. Undergraduate students will acquire knowledge to investigate and solve Aeronautical Engineering problems using basics of applied science and engineering.
- 2. Undergraduate students will utilize the modern technology and techniques to explore new skills and ideas to satisfy the need of society as well as industry.
- 3. Undergraduate students will get finest employment opportunities in the field of Aeronautical Engineering.
- 4. To develop the environment of societal and ethical values to concern with engineering issues.
- 5. Undergraduate students will contribute in the domain specific and interdisciplinary research through the project based learning.

Program Specific Outcomes (PSO)

- Develop profound working knowledge to solve combination of complex problems in aerodynamics, propulsion, structures, flight mechanics and allied courses.
- Be equipped to use CAE packages, simulation languages and advanced tools to solve practical design and analysis problems.
- Undergraduates will be able to utilize the extensive knowledge of design, manufacturing, testing or maintenance of systems and sub systems to pursue career in aeronautical engineering.

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Department of Aeronautical Engineering

	Scheme of Instructions: Second Year (V Sem) B. Tech in Aeronautical Engineering														
S	Sem	Туре	BoS/	Sub Code	Subject	T /	Co	Contact Hours		Credi	Credi % Weightage			ESE	Total
N.			Dept			Р	L	Р	Hrs	ts	CT/IA	CA	ESE	Duration	Marks
1	V	PCC	AE	BAE33501	Mechanics of Machines	Т	3	-	3	3	30	10	60	3 Hrs	100
2	V	PCC	AE	BAE33502	Aircraft Propulsion	Т	3	-	3	3	30	10	60	3 Hrs	100
3	V	PCC	AE	BAE33503	Aerodynamics-II	Т	3	-	3	3	30	10	60	3 Hrs	100
4	V	PCC	AE	BAE33508	Mechanics of Machines Lab	Р	-	2	2	1	-	25	25	2 Hrs	50
5	V	PCC	AE	BAE33509	Aircraft Propulsion Lab	Р	-	2	2	1	-	25	25	2 Hrs	50
6	V	PCC	AE	BAE33510	Aerodynamics Lab	Р	-	2	2	1	-	25	25	2 Hrs	50
7	V	OEC	-	BAE33511	Open Elective-III	Т	2	-	2	2	14	6	30	2 Hrs	50
8	V	PEC	AE	BAE33504-07	Program Elective-I	Т	4	-	4	4	30	10	60	3 Hrs	100
9	V	MDM	ME	BME33501	Heat Transfer	Т	4	-	4	4	30	10	60	3 Hrs	100
	Total				19	06	25	22	164	131	405	23 Hrs	700		

Social Science	Course)	ESC (Engg. Science Course)	PCC (Programme Core Courses)	PEC (Program Elective Courses)	OEC (Open Elective Courses)	MDM (Multi- disciplinary Courses)	(Skill	(Experiential Learning	Distance in the second
<u> </u>			12	4	2	4			courses
12	16	13	34	4	8	8	6	2	4
	(Humanities Social Science & Management) 	(Humanities Social Science & Management) 	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course)	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Core Courses) - - - 12	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Core Courses) (Program Elective Courses) - - - 12 4	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Core Courses) (Programme Elective Courses) (Open Elective Courses)	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Course) (Program Elective Courses) (Open Elective Courses) (Multi- disciplinary Courses) - - 12 4 2 4	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Course) (Program Elective Courses) (Open Elective Courses) (Multi- disciplinary Courses) (Skill Course) - - 12 4 2 4 -	(Humanities Social Science & Management) (Basic Science Course) (Engg. Science Course) (Programme Course) (Programme Courses) (Open Elective Courses) (Multi- disciplinary Courses) (Skill Learning Courses) (Experiential Learning Courses) - - 12 4 2 4 - -

Progressive total credits:85+22=107

Whene	Horbeam	Q.S	polis	June, 2025	1.00	Applicable
Chairperson	Dean Academics	Dr. Pragati Patil	Principal	Date of Release	Version	For AY 2025-26 Onwards
Head Aeronautical Engineering TGPCET, Nagpur	Dean Academics Tuleiramji Gaikwad-Patil College Of EngineerinSult and Technology Nago Eng	Vice-Principal siramji Gaikwad Patil Colle	Prir ege of TGPCE	and Naktode Incipal T, Nagpur		Page 4 of 30

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Programme: B. Tech. Aeronautical Engineering

List of Program Electives offered by Department of Aeronautical Engineering

Program Elective- I	Program Elective-II	Program Elective- III	Program Elective- IV
Semester V	Semester VI	Semester VI	Semester VII/ VIII
BAE33504: Boundary Layer Theory	BAE33604: High Speed Aerodynamics	BAE33608: Control Theory & Systems	BAE34803: Unmanned Aerial Vehicles & Systems
BAE33505: Aircraft Systems & Instruments	BAE33605: Spacecraft Technology	BAE33609: Aviation Management	BAE34804: Composite Materials & NDT
BAE33506: Space Flight Mechanics	BAE33606: Aircraft Navigation & Communication Systems	BAE33610: Helicopter Engineering	BAE34805: Vibrations and Aero-elasticity
BAE33507:	BAE33607:	BAE33611:	BAE34806:
Industrial Aerodynamics	Aircraft Maintenance & Repair	Finite Element Methods (FEM)	Computational Fluid Dynamics

Program: B. Tech. Aeronautical Engineering

List of **Open Electives** offered by Department of Aeronautical Engineering

Open Elective-I	Open Elective-II	Open Elective-III
Semester-III	Semester-IV	Semester-V
BAE32310: Introduction to Aerospace Engineering	BAE32406 : Avionics	BAE32511: Unmanned Aerial Systems

Wardha Road, Nagpur - 441108

Course Category	HSSM (Humanities Social Science & Manag.)	BSC (Basic Science Course)	(Engineerin gScience	PCC (Programm eCore Courses	PEC (Programme Elective Courses)	OEC (Open Elective Courses)	MDM (Multi- disciplinary Course)	SEC (Skill Course)	ELC/FP/CEP Experimential Learning Courses)	CC (Liberal Learning Courses)	Semester Wise Credits
Semester-I	04	08	05					02		02	21
Semester-II	02	08	08					02		02	22
Semester-III	02			11		04	02		02		21
Semester-IV	04			11		02	02	02			21
Semester-V				12	4	02	4				22
Semester-VI				11	06		02	01			20
Semester-VII				04	04				12		20
Semester-VIII				06	04		03		08		21
Cumu. Sum	12	16	13	55	17	08	13	07	22	04	168

	Third Year (Sem	ester-V) B. Tech. Ae	ronautical Er	ngineering			
	BAI	E33501:Mechanics of	Machines				
Teachi	ng Scheme		Examination S	Scheme			
Lecture	es 3 Hr / Week		ESE	60 Marks			
Tutoria	તી -		CIE	40 Marks			
Practic	al -		Total	100 Marks			
Theory	Credits: 3		Duration of E	xam: 3 Hours			
Course	Objectives						
The Ob	jectives of this course are:						
1.	To introduce the fundamental	concepts of mechanisms an	d linkages				
2.	To develop competency in sta	atic force analysis for mecha	nical components				
3.	To understand and analyze fr	ction and energy losses in n	nechanical system	IS			
4.	To explore the application of	governors and gyroscopes in	n mechanical syst	ems			
5.	To enhance skills in gear syst	em design and dynamic bala	ancing				
Unit I	1	Course Contents		of Links, Structure, Difference			
Unit I	or Quadric Cycle Chain, Inv Slider Crank Chain, Double	versions of Four Bar Chain, Slider Crank Chain, Inversi	Single Slider Crations of Double Sli				
Unit II	Kinematics of Machine: In Displacement, Linear Ver Representation of Displacement to Time, Graphical Representation of Angular	ntroduction, Plane Motion, Elocity, Linear Acceleration nent with respect to Time, Gesentation of Acceleration r Displacement by a Vec	Rectilinear Motio on, Equations of traphical Represent with respect to ' tor, Angular Ve	n, Curvilinear Motion, Linear f Linear Motion, Graphical ntation of Velocity with respect Time, Angular Displacement, locity, Angular Acceleration, ular Motion, Relation Between			
Unit II	• •	es of Friction, Friction Betwo , Angle of Repose, Friction	een Lubricated Su	g a Circular Path rfaces, Coefficient of Friction, g on a Rough Inclined Plane,			
Unit IV	Rigid Body Mechanism: Rigid body motion in space. Euler's equation of motion, Gyroscope, angular velocity, angular acceleration, simple precession & gyroscopic couple. Gyroscopic effect on airplane. Speed governors, centrifugal & inertia type, Watt, Portal, Proell, Hartnell governors, Operating characteristics of governors.						
Unit V	Gear terminology, law of ge in involute gears, Methods of gear trains, Epicyclic gear	of avoiding interference. Sin trains, Analysis of epicycl Concepts of cam mechanism	nple gear trains, C lic gear train (Al	ratio of spur gear, Interference compound gear trains, Reverted gebraic and tabular methods), cam mechanism with linkages.			

Wardha Road, Nagpur - 441108

Text B	ooks
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi,3 rd edition, 2009.
2	J.J. Uicker, G.R. Pennock, J.E. Shigley, "Theory of Machines and Mechanisms", OXFORD, 3 rd edition, 2009.
3	Ghosh. A, and A.K. Mallick, Theory and Machine, East-West Pvt. Ltd., New Delhi, 4th edition, 1988.
Refere	nce Books
1	Ramamurthi. V., "Mechanisms of Machine", Narosa Publishing House, 2nd edition, 2005.
2	Rao J. S. and Dukkipatti R.V. —Mechanisms and Machines, Wiley-Eastern Ltd., New Delhi, 1st edition,1998.
3	Robert L. Norton, "Design of Machinery", McGraw-Hill, 2nd edition, 2012.
Useful	Links
1	https://nptel.ac.in/courses/112/105/112105268/
2	https://nptel.ac.in/courses/112/104/112104121/
3	

BAE33501	Course Outcomes	CL	Class Sessions
CO1	Identify key concepts in simple mechanisms and kinematic elements.	2	9
CO2	Apply analytical methods to solve problems involving mechanisms and kinematic chains.	3	9
CO3	Analyze the effects of friction in mechanical systems to determine efficiencies.	3	9
CO4	Apply the knowledge of governors and gyroscope for understanding rigid body mechanism.	3	9
CO5	Analyze gear and cam mechanisms for motion transmission.	3	9

Head Aeronautical Engineering TGPCET, Nagpur

Dean Academics Tuleiramji Gaikwad-Patu College Of Engineering and Technology, Nagour

		V th Sem Aeronautical	0	g					
	BAE33502: Aircraft Propulsion								
Teachir	ng Scheme		Examinatio	n Scheme					
Lecture	es 3 Hr / Week		ESE	60 Marks					
Tutoria	l -		CIE	40 Marks					
Practica	al -		Total	100 Marks					
Theory	Credits: 3		Duration of	Exam: 3 Hours					
Course	Objectives								
The Obj	ectives of this course are:								
	To familiarize students with the fund	damental working principles o	f gas turbine er	ngines					
	To build a foundation in aerothermo		-						
	To provide analytical and conceptua	•	<u>^</u>						
_	To introduce the principles of comp		* *						
	To develop skills for evaluating the	•		ozzles					
		Course Contents							
Unit I	Introduction								
0		t Engine, Twentieth Century	Inventions. Th	e Beginning, Innovations in Gas					
				ic Compressor, Low Emission					
				Aanufacturing Techniques, New					
		'urboprop (ATP) and Geared Turbofan (GTF), Advanced Air breathing							
		totor Topping Cycle, Pulse Detonation Engine (PDE), Millimeter-Scale Gas							
	Turbine, Engines Combined Cy		C						
Unit II									
	Illustration of working of gas to	urbine engine, the thrust equat	ion, Factors af	fecting thrust, Effect of pressure,					
	velocity and temperature change	es of air entering compressor, P	Propulsive effic	iency, Specific fuel consumption,					
	Thrust and power, Factors affect	ting thrust and power,							
	Characteristics of turboprop, tu	rbofan and turbojet, Ram jet, S	Scram jet, Metl	hods of Thrust augmentation, Gas					
	Turbine, Engine Cycle Analysi	S.							
Unit II									
				onic inlets, Shock swallowing by					
				Efficiency, Total Pressure Ratio,					
				tion Between Nozzle Figures of					
				Nozzle Exit Flow, Effect of Flow					
	- ·		-	expanded Nozzle Flow, Shock					
	Losses, Nozzle Area Schedul		Reverser and T	`hrust					
	Vectoring, Nozzle-Turbine (Str	uctural) Integration.							
Unit IV	-								
		mpressors, Axial flow compressor, geometry, twin spools, three spools, stage							
		gree of reaction, radial equilibrium theory,							
				stage analysis, performance maps,					
.	thermal limit of blades and van	•							
Unit V				ion shambon design Combust					
				ion chamber design, Combustion					
				performance. Flame tube cooling,					
	Frame statinzation, Use of fla	ame noiders, Numerical probl	iems. miet, co	mpressor, combustion chamber,					

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

-	
	turbine, and nozzle. Numerical problems
	on matching.
Text	Books
1	Hill, P. G. & Peterson, G. R., Mechanics of Thermodynamics of Propulsion, Addison – WesleyLongman JNC,2 nd Edition, 1999.
2	Cohen, H., Rogers, G. F. C. and Saravanamuttoo, H. I. H., Gas Turbine Theory, Longman, 3rd Edition 1989.
3	Mathur, M. L., and Sharma, R. P., Gas Turbine, Jet and Rocket Propulsion, Standard Publishers andDistributors, Delhi, 3 rd Edition 1988.
Refe	rence Books
1	Oates, G. C., Aerothermodynamics of Aircraft Engine Components, AIAA Education Series, NewYork, 1985.
2	
3	
Usef	ul Links
1	https://nptel.ac.in/courses/101/106/101106033/
2	https://nptel.ac.in/courses/101/101/101101002/
3	https://nptel.ac.in/courses/112/103/112103281/

BAE33502	Course Outcomes	CL	Class Sessions
C01	Describe the historical development, key innovations, and current advancements in air-breathing propulsion systems	2	9
CO2	Apply the principles of gas turbine engines and factors influencing thrust, propulsive efficiency, and fuel consumption.	3	9
CO3	Evaluate nozzle performance in terms of pressure ratios, adiabatic efficiency, and shock losses.	4	9
CO4	Evaluate axial turbine performance through stage analysis, cascade studies, and thermal limits of components.	4	9
CO5	Analyze the types and design considerations of combustion chambers based on combustion processes and flame stabilization methods.	3	9

Head Aeronautical Engineering TGPCET, Nagpur

MA

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagau

	B. Tech. V th Sem Aeronautical Engineering				
	BAE33503: Aerodynamics-II				
Teaching	Teaching Scheme Examination Scheme				
Lectures	3 Hr / Week		ESE	60 Marks	
Tutorial	-		CIE	40 Marks	
Practical	-		Total	100 Marks	
Theory C	redits: 3		Duration of	of Exam: 3 Hours	
Course O	bjectives				
The Object	ctives of this course are:				
	get insight into the basic aspects				
	arrive at the shock wave and exp				
3. To	get exposure on potential equation	on for 2-dimensional compress	ible flow.		
4. To	get knowledge on high-speed flo	w over airfoils, wings and airp	lane configur	ration.	
5. To	gain basic knowledge on low and	d high-speed wind tunnels and	model testing	g.	
		Course Contents			
Unit I	One Dimensional Compres				
	Energy, Momentum, continu	uity and state equations, ve	locity of sou	und, adiabatic steady state flow	
				divergent passage, Performance	
	1		1	ibility effects, Flow in Constant-	
	Area Ducts with Friction (Fa	,	a Ducts with	n heat (Raleigh Flow)	
Unit II	Concept of Waves in Fluid:				
	Mach waves, Compression waves, Expansion waves. Isentropic flow, Adiabatic flow, Shock waves,				
	Prandtl equation and Rankine –Hugonoit relation, Normal Shock Waves and Equations, Oblique Shocks and Equations, Bow Shocks in 2D. Numericals, shock polar, flow past wedges and concave				
	1		shock polar	, flow past wedges and concave	
	corners, strong, weak and de		1 D 0		
Unit III				Shocks in 3D. Shock interactions,	
	Shock reflection from boundaries, Shockwave Boundary Layer interaction. Prandtl-Meyer expansion fans. Shock Expansion Methods. Mach Number and Area rule, Flow through a Nozzle: Convergent				
	Nozzle, Convergent Diverge			0 0	
Unit IV					
	Differential Equation of motion : Steady compressible flows, Small perturbation potential equations, Solution for subsonic and supersonic flow, Prandtl-Glauert transformation relation for subsonic flows.				
	Linearized and exact 2-D supersonic flows theory and its application for calculation of lift and drag				
	and pitching moments centre of pressure, Prandtl-Glauert correction. Compressibility effects on				
	aerodynamic coefficients.				
Unit V	· · ·	ng: Types of subsonic w	ind tunnels,	, Balances and measurements,	
	Interference effects, transonic, Supersonic and hypersonic wind tunnels and characteristic features,				
	their operation and performance, Smock Tunnel, Shock tubes and shock tunnels Free flight testing,				
	Measurements of pressure, velocity, density and Mach number - Flow visualization methods of				
	subsonic and supersonic flow	VS.			
Text Bool		1 701 1 1 771 1 1 77			
	erson, J. D., Modern Compressit	*			
2 Yah	ya, S.M., Fundamentals of Comp	pressible Flow, 3rd Ed., New A	ge Internatio	nal, 2003.	

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade wed by AICTE New Delhi, Govt of Maharash

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

-			
3	L.J. Clancy, "Aerodynamics" Sterling Book House, 3rd Ed, 2006.		
Refe	Reference Books		
1	Rathakrishnan, E., "Gas Dynamics", 6th Edition, Prentice Hall of India, 2017.		
2	Shapiro, A.H., "Dynamics and Thermodynamics of Compressible Fluid Flow", Ronald Press, Volume I, 1982.		
3	Zucrow, M.J. and Anderson, J.D., "Elements of gas dynamics", McGraw-Hill Book Co., New York, 3rd Ed, 1989.		
Usef	ul Links		
1	https://nptel.ac.in/courses/101/101/10101079/		
2	https://nptel.ac.in/courses/101/105/101105059/		
3	https://onlinecourses.nptel.ac.in/noc19_ae05/preview		

BAE33503	Course Outcomes		Class Sessions
CO1	CO1 Apply the fundamental conservation equations to analyze one- dimensional compressible flow.		9
CO2	CO2 Analyze the behavior of normal and oblique shock waves, and their effects using shock relations		9
CO3	CO3 Evaluate complex shock interactions, expansion fans, and nozzle flows using area-Mach relations.		9
CO4	Solve linearized and exact 2D supersonic flow equations by Prandtl-Glauert transformation relations.		9
CO5	Apply wind tunnel test results and flow visualization techniques in flow regimes for aerodynamic model validation.	3	9

Head

Aeronautical Engineering TGPCET, Nagpur

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagour

			AM ELECTIVE-I n Aeronautical Engineeri	nσ		
			Boundary Layer Theory	ing		
Tea	ching	Scheme	Examination Examinatio	on Scheme		
	tures	4 Hr / Week	ESE	60 Marks		
Tute	orial	-	CIE	40 Marks		
Pra	ctical	-	Total	100 Marks		
The	ory C	redits: 4	Duration o	of Exam: 3 Hours		
Cou	rse O	bjectives				
The		tives of this course are:				
1.		understand the behavior of the fluid flow u				
2.		oduce Navier-Stokes equations and some of		1 11 0		
3.		understand the basics of Different types of ompressible flow, Viscid and Inviscid flow		ind compressible flow,		
4.		know about the basics of Boundary layer C				
5.		know about the flow through pipe foe diffe				
			ourse Contents			
Un	it I	Basic concepts of viscous flows: Vi				
		thermal boundary layer theory, govern	ning equations with effect of vi	iscosity, flow over the flat plat		
		at zero incidences, boundary layer thi	· •			
		thickness, boundary layer equation and their general properties. Flat plate at zero angle of incidence				
		method of exact solution, Blassius sol				
Un	it II	Solutions to boundary layer flows: Approximate solutions – Von-karman solution to boundary layer flows over the flat plate, flow with pressure gradient, flow over a cylinder, plane Couette flow, circular				
		Couette flow, flow between parallel pl	•	ider, plane Couelle flow, circula		
Uni	t III	Transition: Pipe flow and flow over a		mber, turbulent spots, principle		
		of theory of stability of Laminar flows, Summerfield equation, factors effecting transition, Laminar				
		aero foils				
Uni	t IV	Turbulent boundary layers: Fundan		•		
		Equations, Reynolds stresses, wind tunnel turbulence, Prandtl mixing length theory, velocity				
		distribution laws, numerical Flow tho		• •		
		developed flow through pipe, effect of roughness, smooth pipes, relation between laws of friction &				
velocity distribution, numerical						
Un	it V	Boundary layer control: Need of bou				
		over the cylinder and airfoil for diffe	-	aration, unsteady viscous flow		
		Startup of plane Couette flow, unstead	ly flow over a cylinder			
	t Book		raton V 9th ad McCrow U.11	2001)		
1 2		ndary layer theory by h. Schlichting and Ge				
$\frac{2}{3}$		helor, G. K., Introduction to Fluid Dynami	· · ·	SS (2000).		
5	vv 111	e, F. M., Viscous Fluid Flow, 3rd ed., Mc	JIAW-MIII (2000).			

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Reference Books

1	Cebeci, T. and Smith, A. M. O., Analysis of Turbulent Boundary Layers, Academic Press (1974).	
2	Gatski, T. B. and Bonnet, JP. Compressibility, Turbulence and High Speed Flow, 2nd ed., Academic Press (2013).	
3		
Usef	ful Links	
1	https://nptel.ac.in/courses/101/101/101101079/	
2	https://nptel.ac.in/courses/101/105/101105059/	
3	https://onlinecourses.nptel.ac.in/noc19_ae05/preview	

BAE33504	Course Outcomes		Class Sessions
CO1	Explain the fundamentals of viscous flow and boundary layer theory.	3	9
CO2	Apply exact and approximate methods to solve laminar boundary layer flow problems.	3	9
CO3	Analyze the transition from laminar to turbulent flow in pipes and over flat plates, and the role of Reynolds number.	3	9
CO4	Evaluate turbulent boundary layer characteristics using Reynolds-averaged equations and velocity distribution laws.	4	9
CO5	Apply boundary layer control methods to delay separation and unsteady viscous flows.	3	9

Head

Aeronautical Engineering TGPCET, Nagpur

ann

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagour

			PROGRAM ELECTI	VE-I		
	B. Tech. V th Sem Aeronautical Engineering					
	BAE33505: Aircraft Systems and Instruments					
Tead	Teaching Scheme Examination Scheme			on Scheme		
Lect	ures	4 Hr / Week		ESE	60 Marks	
Tuto	Tutorial - CIE 40 Marks				40 Marks	
Prac	ctical	-		Total	100 Marks	
The	ory C	redits: 4		Duration of	of Exam: 3 Hours	
Cou	rse O	bjectives				
The	Objec	tives of this course are:				
1.		introduce the fundamentals of a				
2.		provide knowledge of auxiliary	-			
3.	То	explain the subsystems of aircra	ft powerplants			
4.	То	explore environmental and safet	y systems in aircraft			
5.	То	develop an understanding of air	craft instrumentation			
			Course Contents			
Un	it I	Airplane Control Systems		1 (11 1)		
		Conventional Systems, Power assisted and fully powered flight controls, Power actuated systems, Engine control systems, Push pull rod system, flexible push pull rod system, Modern control systems,				
		Digital fly by wire systems, Auto pilot system, Active control Technology, Communication and Navigation systems, Instrument landing systems, VOR - CCV case studies.				
TT	it II			DR - CCV ca	ise studies.	
Un	ιτΠ	Aircraft Hydraulic Systems Hydraulic systems, Study of typical workable system, components, Hydraulic system controllers,				
		Modes of operation.				
Uni	t III	Pneumatic and Hybrid Systems				
	-	Pneumatic systems, Advantages, Working principles, Typical Air pressure system, Brake system,				
		Typical Pneumatic power system, Components, Landing Gear systems, Classification, Shock				
		absorbers, Retraction mechanism.				
Uni	t IV	Engine Systems				
		Fuel systems for Piston and jet engines, Components of multi engines. Lubricating systems for piston and jet engines, Starting and Ignition systems, Typical examples for piston and jet engines.				
Un	it V	Auxiliary System	ng and ignition systems, T	ypical exampl	es for piston and jet engines.	
	LL V	Basic Air cycle systems, Vapour Cycle systems, Boost-Strap air cycle system, Evaporative vapour			cle system. Evaporative vapour	
					• • •	
		cycle systems, Evaporative air cycle systems, Oxygen systems, Fire protection systems, Deicing and anti-icing systems.				
		Aircraft Instruments				
		Flight Instruments and Navigation Instruments, Gyroscope, Accelerometers, Air speed Indicators,			-	
			· 1	-	Study of various types of engine	
instruments, Tachometers, Temperature gauges, Pressure gauges, Operation and Principles.		eration and Principles.				
	t Bool				1002	
1		Kinley, J.L., and Bent, R.D., "Air	A			
2		neral Hand Books of Airframe and injustration. The English Book S	A	S. Dept. of Tra	ansportation, Federal Aviation	
	Administration, The English Book Store, New Delhi1995.					

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade G

Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

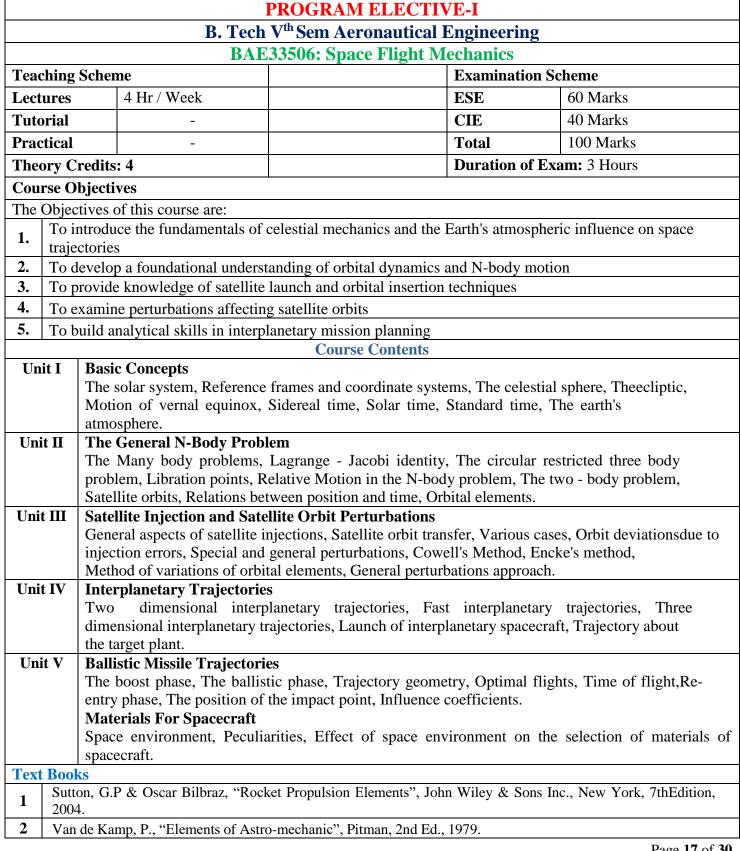
Reference Books Allan G. Seabridge and Ian

1	Allan G. Seabridge and Ian Moir, "Design and Development of Aircraft Systems: An Introduction", (AIAA Education Series), 2004.
Usef	ul Links
1	https://nptel.ac.in/courses/101/101/101101079/
2	https://nptel.ac.in/courses/101/104/101104071/
3	https://nptel.ac.in/courses/101/104/101104071/

BAE33505	Course Outcomes		Class Sessions
CO1	Explain the architecture and functioning of conventional and modern aircraft control systems	3	9
CO2	Analyze the configuration and operation of aircraft hydraulic systems and their components.	3	9
CO3	Compare pneumatic and hybrid systems used in aircraft, with emphasis on landing gear operations, shock absorption, and braking systems.	3	9
CO4	Differentiate between fuel, lubrication, ignition, and starting systems used in piston and jet engines	3	9
CO5	Apply the working principles of aircraft auxiliary systems, flight and engine instruments for performance monitoring.	3	9

Head Aeronautical Engineering TGPCET, Nagpur

ian


Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagau

GINEERING & TECHNOLOGY TULSIRAM JI GAIKWAD-PAT

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

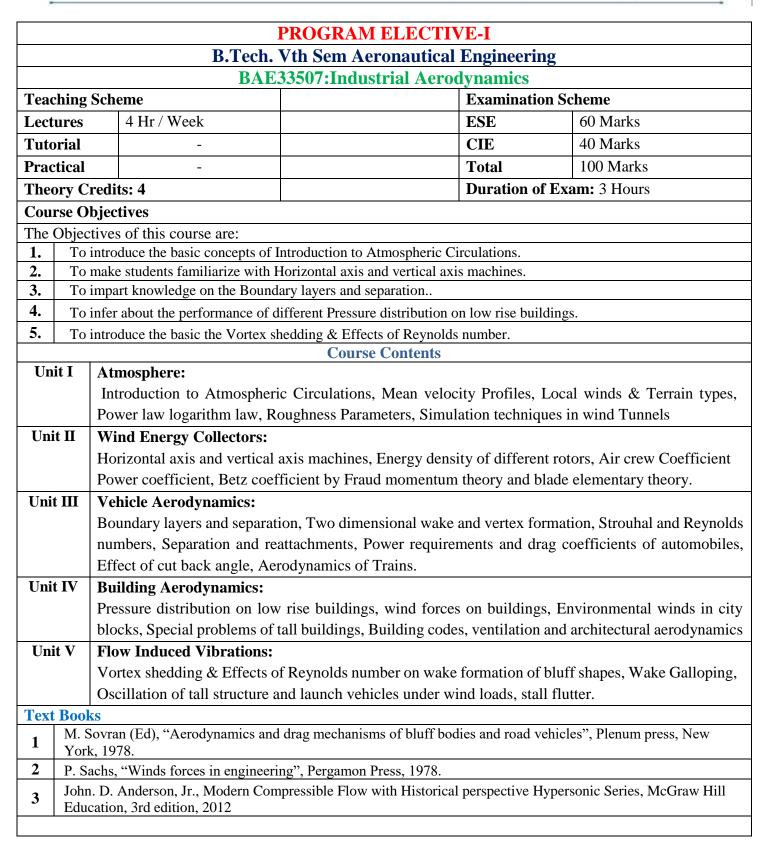
(An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade ed by AICTE. New Delhi, Govt, of Maharash

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

-	,
3	Cornelisse, J.W., "Rocket propulsion and space dynamics", W.H. Freeman & Co., 4th Ed., 1984.
Refe	erence Books
1	Parker, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co., Inc., 3rd Ed., 1982.
2	Thompson, W.T., "Introduction to Space Dynamics", Dover, New York, 1st Ed., 1986.
3	
Usef	ul Links
1	https://nptel.ac.in/courses/101/105/101105030/
2	https://nptel.ac.in/courses/101/105/101105083/
3	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ae06/

BAE33506	Course Outcomes		Class Sessions
CO1	Explain the structure of the solar system, coordinate systems, celestial mechanics, and time measurement systems.	3	9
CO2	Analyze the two-body and restricted three-body problems and apply orbital mechanics to determine satellite motion and orbital elements.	3	9
CO3	Evaluate satellite injection strategies, effects of orbit transfer and injection errors.	4	9
CO4	Analyze interplanetary and ballistic missile trajectories considering phases of flight, geometry, and optimality conditions.	3	9
CO5	Apply principles of trajectory geometry and optimal flight theory to model and optimize missile flight paths	3	9


Head Aeronautical Engineering TGPCET, Nagpur

ann

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagour

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

Reference Books

Neie	clence books	
1	Scorer R.S "Environmental Aerodynamics", Ellis Harwood Ltd, England, 1978	
2	R.D. Blevins, "Flow induced vibrations", Van Nostrand, 2nd edition 2014.	
3		
Usef	Useful Links	
1	https://nptel.ac.in/content/syllabus_pdf/101104005.pdf	
2	2 https://nptel.ac.in/courses/101/108/101108056/	
3	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ae06/	

BAE33507	Course Outcomes	CL	Class Sessions
CO1	Explain the characteristics of atmospheric circulation and boundary layer profiles	3	9
CO2	Compare the performance of horizontal and vertical axis wind turbines based on energy extraction	2	9
CO3	Analyze boundary layer behavior, vortex shedding, and aerodynamic forces on vehicles.	3	9
CO4	Evaluate wind-induced pressures and forces on buildings to improve ventilation and stability.	4	9
CO5	Analyze flow-induced vibrations such as vortex shedding, galloping, and stall flutter.	3	9

Head Aeronautical Engineering TGPCET, Nagpur

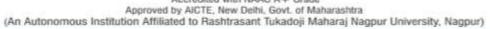
ann

Dean Academics Tuleiramji Gaikwad-Patii College Of Engineering and Technology, Nagaur

		B. Tech. V	th Sem Aeronautical E	ngineerin	g		
			08: Mechanics of Mach		0		
Teachin	g Scheme				ntion Scheme		
Practica		2 Hrs/week		CA 25 Mark		S	
Total C	redit	1		ESE	25 Marks		
				Total	50 Marks		
				Duration	n of ESE: 02 Hours	5	
Course	Objectives						
The Obj	ectives of th	is course are:					
1	Demonstr	ate the gyroscopic ef	fect on airplane, ship, four whe	eler, two wh	eeler and Exhibit skil	ls	
1	towards a	pplication of dynamic	c force				
2	To identify	To identify the motion of cam and follower for velocities and acceleration calculation					
3	To Examine the balancing of the rotating elements to avoid the failure						
4	To learn different types of governors and vibration concept in various machines						
Sr. No.					СО		
1	Evaluate and compare the magnitude of active couple and Gyroscopic couple with respect to			1			
1	Gyroscope						
2	Interpret displacement curve of Cam follower movement with respect to cam rotation					2	
3	Determine the balancing of rotating masses using numerical. Determine Performance Characteristic of Simple watt Governor					<u>3</u> 5	
<u>4</u> 5			gitudinal vibration in spring ma			<u> </u>	
5		2	sional frequency through free a	-	ibration in		
6	logarithmi		sional frequency unough free a	ina aampea v		3	
7	Determine	natural frequency of	torsional vibration in single an	d Double rot	or system.	3	
8			a given body using bifiller susp	ension		5	
9			ft in Transverse Vibration			4	
10		Natural frequency in	a Cantilever Beam			4	
Text Bo							
	-		n,Tata McGrawHill.				
	Mechanism and Machine Theory, J.S.Rao & Dukki Patti, New Age International (P)Ltd, Publishers.						
Reference	e Books						
1.	Theory of Machines, Sadhu S ingh, Pearson publications.						
2.	Theory of Machines and Mechanisms, J.E .Shigley and J.J. Uicker, Oxford University Press.						
Useful	Links						
1	https://nptel	l.ac.in/courses/11210	4114/				
2	https://nptel	l.ac.in/courses/112/10	04/112104121/				

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur) Class DA E 22500 OT C Ant


BAE33508	Course Outcomes	CL	Sessions
CO1	Evaluate the active couple and gyroscopic couple for a gyroscope and their effects on stability and motion.	4	9
CO2	Analyze cam rotation to follower motion to understand timing and dynamic behavior.	3	9
CO3	Determine unbalanced forces in rotating systems using numerical methods to achieve dynamic equilibrium.	3	9
CO4	Analyze natural frequencies of torsional, longitudinal, and transverse vibration systems including shafts, beams, and spring-mass systems.	3	9
CO5	Determine performance characteristics of governors and vibration systems (free and damped), such as critical speed and radius of gyration.	3	9

Head Aeronautical Engineering TGPCET, Nagpur

Dean Academics Tuleiramji Gaikwad-Patu College Of Engineering and Technology, Nagaur

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

B.Tech. V th Sem Aeronautical Engineering							
		BAE3	3509: Aircraft Pr	opulsion	Lab		
Teachin	g Scheme				Examinatio	on Scheme	
Practica	1	2 Hrs/week			CA	25 Marks	
Total C	redit	1			ESE	25 Marks	
					Total	50 Marks	
					Duration of	f ESE: 02 Hours	S
Course	Objectives						
The Obje	ectives of th	is course are:					
1	Analyze th	he velocity distribution	ution in free and wall	jets from o	orifice outlet	ts	
2	Evaluate h	neat transfer charac	cteristics under natura	al and force	ed convectio	on	
3	Analyze p	oropeller performation	nce under laboratory	conditions			
4	Conduct p	performance testing	g of internal combusti	ion engine	s under vario	ous conditions	
5	Examine f	fuel properties rele	evant to aviation safet	y and perfe	ormance		
Sr. No.			List of Experin				СО
1	Determine the velocity profile of free jet from out let of orifice			1			
2	Determine the velocity profile of wall jet from out let of orifice				1		
3	Perform free convective heat transfer over a flat plate					2	
4	Perform forced convective heat transfer over a flat plate					2	
5	Determine the calorific value of aviation fuel					3	
6	To determine the calorific value of Solid Rocket Propellant				3		
7		the performance of					4
8	Conduct P loads.	Performance Test or	n Single Cylinder, Two	o stroke Pe	trol engine a	t different	5
9	Conduct P	Performance Test or	n Single Cylinder, Fou	ır stroke Pe	trol engine a	t different	5
		on ratio and differ					
10		Flash & Fire Point	t of liquid aviation fuel	l (ATF)			3
Text Bo							
	Hill Philip, Addison We		chanics and Thermod	lynamics o	f Propulsion	n, 2 nd edition, 19	92,
	El Sayed Al Edition, 200		opulsion & Gas Turbi	ne Engines	s, Taylor & I	Francis, CRC Pr	ess, 3 rd
Referenc							
	Mattingly I.D. Elements of Propulsion: Gas Turbines and Rockets AIAA Education Series						
		s of engineering Th	ermodynamics by R. K.	. Rajput, La	xmi Publicat	ions, 4th Edition 2	2016.
Useful	Links						
1	https://nptel	.ac.in/courses/112/1	05/112105123/				
2	1 1	.ac.in/courses/112/1					
<u>ا</u> ــــــــــــــــــــــــــــــــــــ							

BAE33509	Course Outcomes	CL	Class Sessions	
CO1	Analyze the velocity profiles of free and wall jets from an orifice to understand jet flow characteristics and boundary layer development.	3	9	
CO2	CO2 Evaluate free and forced convective heat transfer experiments over a flat plate and the heat transfer coefficients.			
CO3	Determine the calorific values of aviation fuel and solid rocket propellant using bomb calorimetry	3	9	
CO4	Evaluate the performance characteristics of a propeller under test conditions such as thrust, torque, and efficiency data.	4	9	
CO5	Analyze two-stroke and four-stroke petrol engines compression ratios, engine efficiency, fuel consumption, and output.	4	9	

Head

Aeronautical Engineering TGPCET, Nagpur

ann

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagaur

	B. Tech. Vth Sem Aeronautical Engineering						
			E33510: Aerodynamics	<u> </u>	2		
Teachi	ng Scheme				tion Scheme		
Practic	al	2 Hrs/week		CA	25 Marks		
Total C	redit	1		ESE	25 Marks		
				Total	50 Marks		
				Duration	of ESE: 02 Hours		
Course	Objectives		I				
The Ob	jectives of the	is course are:					
1	-	-	nce with fundamental aerod	-			
2	To develo	To develop proficiency in using instrumentation and data acquisition systems					
3	To enhance	ce understanding of	aerodynamic forces and flo	w behavior.			
4	To build s	skills in interpreting	and presenting experiment	al data			
5	To enable experimental analysis of boundary layers and flow separation						
Sr. No.	o. List of Experiment				CO		
1	Calibration of the wind tunnel test section velocity verses the fan RPM				1		
2	Estimating the pressure distribution (coefficient of pressure) over a circular cylinder				1		
3	Estimating the pressure distribution (coefficient of pressure) over a symmetrical aerofoil				1		
4	Estimating the pressure distribution (coefficient of pressure) over a cambered aerofoil				2		
5	-	-	tion (coefficient of pressure) o	_		2	
6	tunnel bala	ince	s of forces over a cambered ae		component wind	3	
7		g the three componen t wind tunnel balance	ts of forces over an aircraft mo	odel using 3-		3	
8			f test section by considering th	e boundary la	yer effect	4	
9			lifferent models (Aircraft mod erofoil and cambered aerofoil)		high rise building,	4	
10	Tuft flow v	visualization over diff	Ferent models (Aircraft model, erofoil and cambered aerofoil)	car model, hig	gh rise building,	5	
Text Bo							
1	Hill Philip, P Wesley	Peterson Carl, Mecha	nics and Thermodynamics of I	Propulsion, 2 nd	¹ edition, 1992, Addis	on	
2		med, Aircraft Propul	sion & Gas Turbine Engines, 7	Faylor & Fran	cis, CRC Press, 3 rd Ec	lition,	
Referen	ce Books						
1.							
2.	Fundamentals of engineering Thermodynamics by R. K. Rajput, Laxmi Publications, 4th Edition 2016.						
Useful	Links						
1	https://nptel	.ac.in/courses/112/10	5/112105123/				
2	https://nptel	.ac.in/courses/112/10	4/112104113/				

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade ed by AICTE, New Delhi, Govt, of Maharashtr

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

BAE33510	Course Outcomes	CL	Class Sessions
CO1	Calibrate a wind tunnel test section by establishing the relationship between fan RPM and flow velocity, and verify flow uniformity.	3	9
CO2	Analyze pressure distributions and coefficients of pressure over aerodynamic shapes (circular cylinder, flat plate, symmetrical and cambered aerofoils).	3	9
CO3	Evaluate the aerodynamic force components on aerofoil and aircraft models using a 3-component wind tunnel balance.	4	9
CO4	Determine the effectiveness of test section area of a wind tunnel considering boundary layer effects.	3	9
CO5	Visualize flow patterns using smoke and tuft flow methods over models to identify flow separation, attachment, and wake structures.	2	9

Head

Aeronautical Engineering TGPCET, Nagpur

Dean Academics Tuleiramji Gaikwad-Patu College Of Engineering and Technology, Nagour

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

	DAT?	B.Tech. Vth Sem Aero	0 0			
Tooshin		3511: Unmanned Aeria	Systems (Open Elective Examination			
	g Scheme	O Hr. / Weels	CT-I			
Lecture	S	2 Hr / Week	-	7 Marks		
			CT-II	7 Marks		
	-		CA	6 Marks		
Tutorial -			ESE	30 Marks		
Practica		-	Total	50 Marks		
Theory	Credits: 2		Duration of	Exam: 2 Hours		
Course	Objectives					
5	ective of this cour					
1.		asic concepts of unmanned aeria				
2.		familiarize themselves with the o				
3.	To impart knowled	ige on the hardware components	and their application in the UAS	S.		
		Course (lantanta			
	Introduction					
Unit-I	History of U		to Unmanned Aircraft Systems,	models and prototypes,		
Unit-II	Introduction to Characteristic	The Design of UAS: Introduction to Design and Selection of the System, Aerodynamics and Airframe Configurations, Characteristics of Aircraft Types, Design Standards and Regulatory Aspects, India, UK, USA and Europe, control surfaces, specifications.				
Unit-III	Avionics Hardware: Autopilot, AGL, pressure sensors, servos, accelerometer, gyros, actuators, power supply, processor, integration, installation, configuration, and testing. Working Principles of various types of battery and its applications.					
Text Bo	oks					
1		Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2nd Ed., 2007				
2			tion to UAS Systems", UAS Syst	ems, Inc, 4th Ed., 1998		
3	Reg Austin "Un 2010	manned aircraft systems: UAS d	esign, development and deploym	ent", Wiley, 5th Ed.,		
Referen	ce Books					
	G Lalit Gupta a	nd OP. Sharma, 'Aircraft System	ns (Fundamentals of Flight Vol. I	V)'.		

1	G. Lalit Gupta and OP. Sharma, 'Aircraft Systems (Fundamentals of Flight Vol. IV)',	
	I	HimalayanBooks;2006.
	2	Treager. S, "Gas Turbine Technology", McGraw-Hill, 3rd edition, 2013, ISBN-13: 978- 1259064876.
	2	R.W. Sloley and W.H. Coulthard, 'The aircraft Engineers Handbook, No 4, Instruments', 6th Edition,
	3	2005. ISBN13: 978-8175980518.

Use	eful Links
1	https://nptel.ac.in/courses/101104071
2	https://nptel.ac.in/courses/101/105/101105059/
3.	https://nptel.ac.in/courses/101/105/101105031/

BAE33511	Course Outcomes	CL	Class Sessions
	Acquire knowledge on the importance of UAS with respect to their applications.	3	9
CO2	Distinguish between various subsystems and configurations of UAS.	3	9
CO3	Perform ground test and troubleshooting with respect to UAS operation.	4	9

Head

Aeronautical Engineering TGPCET, Nagpur

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagau

			Third Year (Semester-V) B	.Tech			
				1: Heat Transfe				
Т	eaching	Scheme				Examina	tion Sch	eme
Lectu	ires	3 Hr/Week				СТ		0
Tutor	rials	-				СА	1	0
Total C	redits	4				ESE	6	0
						Total	100 N	Aarks
						Duration of	ESE:03H	Irs
Course	Objectiv	ves:				I		
1	Student	s will learn the d	ifferent modes of I	neat transfer lik	e conductior	n, convection	& Radiat	ion,
2	To acquaint Heat transfer through extended surfaces.							
3	Student	s understand the	concept of convec	tion, free and f	orced convec	ction		
4	To Solv	ve lumped parame	eter transient heat	transfer problei	ms.			
5	To Prec	lict heat exchange	er performance					
			Course Co	ontents				Hours
Unit II	 & radiation. Fourier's law, Newton's law of cooling, Stefan Boltzmann law; thermal resistance and conductance, thermal diffusivity, analogy between flow of heat and electricity, One dimensional steady state conduction equation for the plane wall, Cylinder and its Numerical, overall heat transfer coefficient. Conduction with internal heat generation: Plane wall, cylinder and its Numerical. Extended Surfaces: Types and Applications of Fins, Heat transfer through extended surfaces, derivation of temperature distribution equations and heat transfer through fins, Effectiveness and efficiency of a fin. 						(9)	
Unit III Unit IV	 turbulent flow over a flat plate and through a duct. Free and Forced Convection: Physical significance of the dimensionless numbers related to free and forced convection, empirical correlations for free and forced convection for heat transfer in laminar and turbulent flow over a flat plate and through a duct. Introduction to Condensation and Boiling: Condensation and its type, Film and drop wise condensation, Modes of boiling, Different boiling regimes, pool boiling. 7 Radiation: Stefan- Boltzmann law, Emissive power, Surface emission properties, 				(9) (9)			
Unit V	Absorptivity, Reflectivity, Transmissivity, Concept of Black body radiation, Planck's distribution law, Wien's displacement law, The grey, black and real surface. Radiation shape factor, Kirchoff's law, Radiation shields.						(9)	

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur)

1				
Text Books				
T.1	S. P Sukhatme, A Text Book of Heat Transfer, University Press, 4th Edition, 2005			
T.2	Fundamentals of Heat and Mass Transfer, K. N. Seetharam & T.R. Seetharam, Willey.			
T.3	R.C. Sachdeva: Fundamentals of Engineering Heat and Mass Transfer, Wiley Eastern Ltd. (I), 2010			
Reference Books				
R.1	J.P. Holman: Heat Transfer; McGraw-Hill, 1996			
R.2	Yunus A. Cengel, Heat Transfer: A Practical Approach, McGraw-Hill Higher Education, 2002			

	Useful Links	
1	https://nptel.ac.in/courses/112/107/112107256/	
2	https://nptel.ac.in/courses/112/106/112106155/	
3	hhttps://nptel.ac.in/courses/103/103/103035/	

	Course Outcomes	CL
BME33501.1	Compare the different modes of heat transfer and calculation of thermal resistance and Thermal Conductivity	3
BME33501.2	Apply internal heat generation concepts to calculate heat transfer rates and understand the significance of different types of fins	3
BME33501.3	Apply empirical correlations to estimate forced and free convection heat transfer in internal and external flows."	3
BME33501.4	Evaluate heat transfer rate by radiation from ideal and actual surfaces and enclosures of different geometries.	5
BME33501.5	Evaluate heat exchanger performance for the parallel and counter flow.	5

Head Aeronautical Engineering TGPCET, Nagpur

an

Dean Academics Tuleiramji Gaikwad-Pati College Of Engineering and Technology, Nagour