

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University) Department of Biotechnology

Teaching Scheme and Syllabus

<u>of</u>

6th Semester B.Tech Biotechnology

(From Academic Year 2023-24)

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Vision of Institute

To emerge as a learning Centre of Excellence in the National Ethos in domains of Science, Technology and Management.

Mission of Institute

- 1. To strive for rearing standard and stature of the students by practicing high standards of professional ethics, transparency and accountability.
- 2. To provide facilities and services to meet the challenges of Industry and Society.
- 3. To facilitate socially responsive research, innovation and entrepreneurship.
- 4. To ascertain holistic development of the students and staff members by inculcating knowledge and profession as work practices.

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (**An Autonomous Institution Affiliated to RTM Nagpur University**)

Department of Biotechnology

Vision of the Department

To produce competent Entrepreneurs, Researchers and industry ready Professionals in Biotechnology through quality education

Mission of the Department

- 1. To impart quality technical education and unique interdisciplinary research by merging science and technology
- 2. To make students aware about techniques of modern biotechnology and industrial advancements
- 3. To Inculcate Social and Ethical values in the students and empower them through imparting of knowledge and skills in biotechnology

Program Education Objectives (PEO)

- 1. Develop Biotechnology graduates as human resource with technical competencies and strong foundation of science and engineering.
- 2. Acquire fundamental knowledge of mathematics, Biosciences and engineering to analyze, design and implement solutions to the Biotechnological problems.
- 3. Understand emerging concepts and trends in Biotechnology and allied fields.
- 4. Apply various tools to develop innovative systems for the bioprocesses.

TULSIRAMJI GAIKWAD-PATIL College of Engineering and Technology

Wardha Road, Nagpur - 441108 Accredited with NAAC A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Program Outcomes (PO)

- **1. Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and software tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Lifelong learning:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

PSO-1: Ability to apply the acquired knowledge and recent techniques to come up with ideas in the domains of Bioprocess Engineering, Bioinformatics and Biopharmaceuticals.

PSO-2: Ability to utilize their proficiency and skills in solving real life problems in Diagnostics Genetic Engineering and Fermentation Technology using recent technologies.

PSO-3: Analyzing the impact of Biotechnology Engineering solutions in the societal and human context to create productive human resource for the country.

(An Autonomous Institute Affiliated to RTM Nagpur University, Nagpur)

Scheme of Instructions: Third Year B. Tech in Biotechnology

Semester VI

Sr.	Course	Course	Course Title	L	Т	Р	Contact	Course		EXAM SCHEME			
No.	Category	Code					Hrs./Wk	Credits	CT1	CT2	CA	ESE	TOTAL
1	PCC	BBT3601	Mass Transfer in Biotechnology	3	-	-	3	3	15	15	10	60	100
2	PCC	BBT3602	Bioseparation Engineering	3		-	3	3	15	15	10	60	100
3	PCC	BBT3603	Animal and Plant Biotechnology	3	-	-	3	3	15	15	10	60	100
4	PEC	BBT3604-06	Professional Elective -III	3	-	-	3	3	15	15	10	60	100
5	PEC	BBT3607-09	Professional Elective -IV	3	-	-	3	3	15	15	10	60	100
6	OEC	B\$\$XX01-14	Open Elective – II	3	-	-	3	3	15	15	10	60	100
7	PCC	BBT3610	Mass Transfer in Biotechnology Lab	-	-	2	2	1	-	-	25	25	50
8	PCC	BBT3611	Animal and Plant Biotechnology Lab	-	-	2	2	1	-	-	25	25	50
9	PCC	BBT3612	Bioseparation Engineering Lab	-	-	2	2	1	-	-	25	25	50
10	PROJECT	BBT3613	Mini Project	-	-	2	2	1+1@	-	-	50	50	100
11	MCC	BAU3606	Social Awareness	2	-	-	2	Audit	-	-	-	-	-
			Total	20	0	8	28	23	90	90	185	485	850

L- Lecture T-Tutorial P-Practical CT1- Class Test 1 CT2- Class Test 2 CA- Continuous Assessment ESE- End Semester Examination (For Laboratory: End Semester Performance)

Course Category	HSMC (Hum.,	BSC (Basic	ESC (Engg.	BS (Biological	PCC	PEC (Professional	OEC (Biological	Project (Project	MCC (Mandatory
	Soc. Sc, Mgmt.)	Sc.)	Sc.)	Sc.)	(Professional	Elective Courses)	Sc.)	/Seminar/ Industrial	Courses)
					Core courses)			Training)	
Credits	3	-	-		8	6	3	2	Yes
Cumulative Sum	12	18	14	16	29	6	3	3	

Progressive Total Credits: 101+23=124

BOS Chairman Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

DepenAcadentics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Vice-Principal kwad-Patil Tulsiram College Of Engineering & Technology, Nagpur.

Principalipar Tulsiramji Gaikwad Patil College Of Engineering and Teghnology, Nagpu*

(An Autonomous Institute Affiliated to RTM Nagpur University, Nagpur)

Electives for Semester VI B. Tech Biotechnology

]	Professional Elective - III: Semester-VI	P	rofessional Elective - IV: Semester-VI
BBT3604	Big Data Analytic	BBT3607	Precision Medicine & Wellness
BBT3605	Biosimilars Technology	BBT3608	Nano Biotechnology
BBT3606	State of Art Imaging	BBT3609	Tissue Engineering

	List of Open Elective							
Sr. No.	Course Code	Course Title	Sr. No.	Course Code	Course Title			
1	BCSXX01	Cyber Law and Ethics	9	BMEXX09	Nanotechnology and Surface Engineering			
2	BCSXX02	Block chain Technology	10	BMEXX10	Automobile Engineering			
3	BITXX03	Cyber Security	11	BEEXX11	Power Plant System			
4	BITXX04	Artificial Intelligence	12	BEEXX12	Electrical Materials			
5	BECXX05	Internet of Things	13	BAEXX13	Avionics			
6	BECXX06	Embedded Systems	14	BAEXX14	Unmanned Aerial Vehicles			
7	BCEXX07	Introduction to Art and Aesthetics	15	BBTXX15	Biomaterials			
8	BCEXX08	Metro Systems and Engineering	16	BBTXX16	Food and Nutrition Technology			

BOS Chairman Department Of Biotechnology Tulsiramii Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Acpedin Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

xpa Caikwad-Patil Tulsirami College Of Engineering & Technology, Nagpur.

² Principal Principal Tulsiramji Galkwad Patil College Of Engineering and Technology, Nagpu*

Wardha Road, Nagpur-441 108

NAAC Accredited A+ Grade Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)							
		BBT3601	: Mass Transfer in Biotechnol	ogy				
Tea	ching Schem	ie		Examination S	Scheme			
Lec	tures	3 Hr / Week		ESE	60 Marks			
Tut	orial	-		CIE	40 Marks			
Pra	Practical -			Total	100 Marks			
The	eory Credits:	3		Duration of Ex	xam: 3			
				Hours				
Cou	ırse Objectiv	ves						
The	Objectives o	f this course is:						
	To compreh	nend the principles	of molecular diffusion in fluids	and solids, and a	apply			
1. interphase mass transfer coefficients to analyze diffusion through membranes for vario				for various				
	applications	s such as oxygen tra	ansfer in fermenters.					
	To master t	he techniques of di	stillation, including vapor-liquid	l equilibrium inte	erpretation			
2.	and estimat	tion of VLE using vapor pressure data, for effective differential distillation,						
	equilibrium	distillation, and re	ctification.					
	To understa	and gas absorption	processes, including equilibrium	relationships an	nd mass			
3.			alytical and graphical methods to		olumns for			
	absorption	and analyze mass tr	ansfer in packed and fluidized b	beds.				
			Course Contents					
			n in fluids, Diffusion in solid	-				
		coefficient and their correlations. Concept of effective diffusivity, Diffusion						
		through membranes and applications. Measurement of ka. Oxygen transfer						
		methodology in fer						
			liquid equilibrium, T-x,y and I					
		VLE using vapor pressure data and relative volatility. Differential distillation,						
		Equilibrium distillation, Rectification.						
		Gas Absorption: Equilibrium relationship, Mass transfer theories. Plate column						
l l		-	lytical and graphical calculatio	on of number of	plates. Mass			
		transfer in packed a						
			traction: Equilibrium for immi	-	•			
		• •	cal fluid extraction. Concept of number of stages for cocurrent					
		and counter current						
			stics of the biological material	•				
		drying. Evaluation of drying rates. Equipment for dehydration of biological						
		materials, Crystalli	zation, Theory of crystallization	l .				

Wardha Road, Nagpur-441 108 NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Text Book	Text Books				
T.1 "Unit Operations of Chemical Engineering" by K. A. Gavhane					
T.2	"Mass Transfer: Principles and Applications" by H. Panda				
Reference	Reference Books				
R.1	"Separation Process Principles" by J. D. Seader, Ernest J. Henley, and D. Keith Roper				
R.2	"Introduction to Chemical Engineering" by S. K. Ghosal and A. K. Biswas				

	Useful Links							
1	https://www.sciencedirect.com/topics/physics-and-astronomy/molecular-diffusion							
2	https://www.sciencedirect.com/topics/engineering/interphase-mass-transfer							
3	https://chem.libretexts.org/Bookshelves/Inorganic Chemistry/Introduction to Solid State Chemi							
	stry/01: Lectures/1.09: Diffusion							

	Course Outcomes	CL	Hours
BBT3601.1	Understand principles & applications of molecular diffusion,	2	9
DD1 5001.1	including its relevance in oxygen transfer methodology.		
	Analyze vapor-liquid equilibrium data, estimate VLE, and	4	8
BBT3601 .2	perform differential distillation, equilibrium distillation, and		
	rectification processes effectively.		
	Comprehend gas absorption processes, design plate columns,	4	8
BBT3601.3	and analyze mass transfer in packed and fluidized beds for		
	industrial applications.		
	Apply liquid-liquid extraction principles, understand	3	9
BBT3601 .4	supercritical fluid extraction, and determine stages for contacting		
	processes.		
	Understand drying characteristics, evaluate rates, select	2	8
BBT3601. 5	dehydration equipment, and grasp crystallization theory and		
	applications.		

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of

Engineering & Technology, Nagpur

Dean Academics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)							
		BBT36	02: Bioseparation Engineering	5				
Tea	ching Schem	ie		Examination S	Scheme			
Lec	tures	3 Hr / Week		ESE	60 Marks			
Tut	orial	-		CIE	40 Marks			
Pra	Practical -			Total	100 Marks			
The	Theory Credits: 3			Duration of Ex	xam: 3			
				Hours				
Cou	ırse Objectiv	/es						
The	Objectives o	f this course is:						
	To introduc	ce the importance	of bioseparation in biotechnol	ogy, covering th	ne range and			
1.			and the economic significanc					
	stages.	-	-					
	To explore	various methods	of cell disruption and remova	al of insoluble	solutes from			
2.	fermentatio	n broths, including	physical, chemical, enzymatic	, and mechanica	l techniques,			
	along with	microfiltration and	centrifugation.					
	To understa	and concentration t	echniques for bioproducts, inclu	iding extraction	methods like			
3.	liquid-liqui	d and supercritical	fluid extraction, as well as pre-	ecipitation techn	iques, and to			
	comprehene	d purification proce	sses such as membrane separati	on and chromate	ography.			
			Course Contents					
			separation: Introduction to sepa					
			otechnology, Range and cha					
		_	nce of Bioseparation, Characteri	istics of Ferment	ation Broths,			
		Stages of Downstre		ent methods of c	ell disruption			
		Cell Disruption and Withdrawal of insoluble: Different methods of cell disruption for the release of cellular products: Physical, chemical, enzymes and mechanical						
		methods. Removal of insoluble solutes: Pre-treatments of fermentation broths.						
		Microfiltration and Centrifugation.						
			Bioproducts: Extraction of low		0			
I			bioproducts. Extraction of bio					
		aqueous two-phase, reverse micellar, and supercritical fluid extraction. Precipitation techniques using salt and solvent.						
			s: Membrane separation: Basi	c principles and	advantages			
-								
		Modes of operation, Pressure-driven processes (MF, UF, NF & RO), Concentration-driven by Pervaporation. Chromatographic separation: lon						
			, size exclusion chromatography.					
			Lyophilization and product form					
		drying. Excipients: thickeners, surface agents, preservatives, colourings and						
		flavourings. Dosag	e torms.					

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Text Book	Text Books					
T.1	"Bioseparations Science" by Paul A. Belter and Wei-Shou Hu					
Т.2	"Downstream Processing of Proteins: Methods and Protocols" edited by Mohamed A. Desai and Nicolai L. Noppe					
Reference	Books					
R.1	"Principles of Downstream Techniques in Biological and Chemical Processes" by Mukesh Doble and Anil Kumar Kruthiventi					
R.2	"Separation Processes in Biotechnology" by J. Sivasankar					

	Useful Links						
1	https://www.researchgate.net/publication/371875460_Industrial_Biotechnology_Downstream_processing						
2	https://www.sciencedirect.com/topics/immunology-and-microbiology/downstream-processing						
3	https://www.wiley.com/en- us/Downstream+Industrial+Biotechnology:+Recovery+and+Purification-p-9781118131244						

	Course Outcomes	CL	Hours
BBT3602.1	Analyze fermentation broths to identify downstream processing stages	3	9
	effectively.		
BBT3602.2	Select appropriate cell disruption methods and evaluate their efficacy for	5	7
	removing insoluble solutes from fermentation broths.		
BBT3602.3	Apply extraction and precipitation techniques to concentrate bioproducts	5	8
	efficiently.		
BBT3602.4	Design purification protocols integrating membrane separation and	4	7
	chromatography techniques for bioproduct purification.		
BBT3602.5	Formulate bioproducts using lyophilization and spray drying techniques,	3	8
	considering the role of excipients in dosage form formulations.		

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108 NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

Third Year B.Tech (Sixth Semester)							
	BBT3603: Animal and Plant Biotechnology						
Teaching Scheme				Examination Scheme			
Lectures		3 Hr / Week		ESE	60 Marks		
Tutorial		-		CIE	40 Marks		
Practical		-		Total	100 Marks		
Theory C	Credits: 3			Duration of Exam: 3 Hours			
Course C	bjectives						
The Obje	ctives of th	nis course is:					
1. To g	gain a thor	ough Knowledge	e about basic of Animal and	plant Biotechnology	/.		
2. To s	study diffe	rent techniques 1	elated to animal and plant b	iotechnology.			
3. To a	apply princ	ciples biotechnol	ogy for culturing, propagati	on and maintenance	of animal		
and	plant cells	•					
Course C	Outcomes						
At the end	d of the un	it, students will	be able to :				
			Course Contents				
	Pla	ant Tissue cultur	e: Historical perspective of	plant tissue culture,	tissue culture		
		lab and organization, sterilization techniques, types of nutrient media and media					
Unit		composition, plant regeneration pathways, role of phytohormones, cell culture					
		techniques - cell tissue, organ cultures, callus cultures, suspension culture and					
	-	otoplast culture					
			Technology: Basics of J				
Unit l		cultivation technology, Poly-house farming techniques Hydroponic plant					
		cultivation and its techniques, Aeroponic plant cultivation and techniques, Soil- less plant cultivation techniques and its advantages					
		*	-	•			
			re: Cell culture substrates, cu	,			
Unit I		media, initiation and maintenance of cell cultures, cell culture products,					
		cryopreservation techniques, immobilized cultures, organ culture- culture techniques, organ engineering					
				imale with new trai	te trancamia		
Unit I		Transgenic Animal Technology: Transgenic animals with new traits, transgenic					
Omti		animals as bioreactors for producing pharmaceutically important compounds and therapeutics, tissue engineering					
	tile	rupeuties, tissue					
		Animal and Plant Biotechnology Applications: Herbicide-resistant crops,					
Unit V		Drought-tolerant crops, Disease-resistant crops, Phytoremediation, Transgenic					
	ani	mals for research	h, Organ donation, Pharmac	eutical production			

Wardha Road, Nagpur-441 108 NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Text Books				
T.1	T.1 "Plant Tissue Culture: Techniques and Experiments" by Roberta H. Smith			
T.2 "Animal Cell Culture: Essential Methods" by John M. Davis				
Reference Books				
R.1 "Plant Propagation: Principles and Practices" by Hudson T. Hartmann and Dale E. Kest				
R.2 "Transgenic Animal Technology: A Laboratory Handbook" by Carl A. Pinkert				

Useful Links					
1	https://www.researchgate.net/publication/371875460_Industrial_Biotechnology_Downstream_p rocessing				
2	https://agsci.psu.edu/digital-education/academic/syllabi/abe-888				
3	https://handbook.unimelb.edu.au/2024/subjects/chen90035				

Course Outcomes			Hours
BBT3603.1	Understand the basic principles of animal and plant Biotechnology.	6	7
BBT3603.2	BT3603.2 Describe basic techniques for preparation of different media for plant and animal cell culture.		8
BBT3603.3	Develop different techniques for propagation and maintenance of animal and plant cells.	5	9
BBT3603.4	Develop different techniques for production of transgenic plants and animals.	5	8
BBT3603.5	Select proper culture techniques for propagation of transgenic plants and animals.	4	7

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics

Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108 NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)						
	BBT3604: PE3: Big Data Analytics						
Teaching Scheme Examination Scheme							
Lec	tures	3 Hr / Week		ESE	60 Marks		
Tut	orial	-		CIE 40 Marks			
Pra	ctical	-		Total 100 Marks			
The	Theory Credits: 3 Duration of Exam: 3 Hours				f Exam: 3 Hours		
Course Objectives							
The	Objectives of the	nis course is:					
	To comprehe	nd the fundame	ntals of Big Data, inc	cluding its types,	characteristics, and		
1.	evolution, and	evolution, and to analyze the challenges associated with Big Data, focusing on the 5 Vs					
1.	(Volume, Velocity, Variety, Veracity, and Value), and to evaluate the importance and						
	application of Big Data in various domains.						
	To understand	the history and	architecture of Hadoop	p, including its dis	tributed file system		
2.					eiency in application		
	development and database integration within the Hadoop ecosystem.						
	To master the	To master the MapReduce framework, including its basics, working principles, development					
3.	of MapReduce applications, and testing procedures, and to analyze real-world scenarios for						
	implementing MapReduce solutions effectively.						

	Course Contents				
	Introduction to Big Data: Types of Digital Data-Characteristics of Data -				
	Evolution of Big Data - Definition of Big Data - Challenges with Big Data - 5 Vs				
Unit I	of Big Data, Big data Technology Components, Big data importance and its				
Unit I	application, Big data features- security, compliance, auditing and protection, Big				
	data privacy and ethics, Big data analytics, analytics processes and tools, modern				
	analytics tools				
	Hadoop: History of Hadoop, Apache Hadoop, the Hadoop distributed file system,				
Unit II	Components of Hadoop, data format, analyzing data with Hadoop, scaling out,				
Unit II	Hadoop streaming, Hadoop pipes, Hadoop Echo System, Application				
	development in Hadoop, Getting your database in Hadoop				
	MapReduce: MapReduce framework and basics, how map reduce works,				
Unit III	developing a map reduce application, unit test with MR unit, test data and local				
Unit III	test, MapReduce types, input format, output formats, MapReduce features, Real				
	world map reduce.				
	HDFS (Hadoop Distributed file system): Design of HDFS, HDFS Concepts,				
Unit IV	benefits and challenges, files sizes, block sizes and block abstraction in HDFS,				
	data replication, how does HDFS store, read and write files, java interfaces to				

Wardha Road, Nagpur-441 108

NAAC Accredited **A**⁺ **Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

	HDFS, command line interface, Hadoop file system interface, data flow, da			
	ingest with flame and scoop, Hadoop archives.			
	Hadoop Environment: Setting up a Hadoop cluster, Cluster specification, cluster			
	setup and installation, Hadoop configuration, security in, Hadoop, administering			
Unit V	Hadoop, HDFS monitoring and maintenance, Hadoop benchmarks, Hadoop in the			
Unit v	cloud. Hadoop Ecosystem and YARN: Hadoop ecosystem components, scheduler			
	fair and capacity, Hadoop 2.0 new features- Name Node high availability, HDFS			
	federation, MRy2, YARN, Running MRv1 in YARN			

Text Books	Text Books				
T.1	"Big Data: Principles and Best Practices of Scalable Realtime Data Systems" by Nathan Marz and James Warren				
T.2	"Hadoop: The Definitive Guide" by Tom White				
Reference Boo	Reference Books				
R.1 "MapReduce Design Patterns: Building Effective Algorithms and Analytics Hadoop and Other Systems" by Donald Miner and Adam Shook					
R.2	"Hadoop Operations: A Guide for Developers and Administrators" by Eric Sammer				

Useful Links			
1	1 https://www.geeksforgeeks.org/hadoop-tutorial/		
2	2 <u>https://www.guru99.com/bigdata-tutorials.html</u>		
3	https://intellipaat.com/blog/tutorial/hadoop-tutorial/		

	Course Outcomes	CL	Hours
BBT3604.1	Apply knowledge of Big Data fundamentals to analyze challenges and		6
	opportunities associated with Big Data, including its characteristics and		
	importance in various domains.		
BBT3604.2	Develop proficiency in Hadoop architecture and application	5	6
	development, including understanding Hadoop components, analyzing		
	data with Hadoop, and integrating databases into Hadoop environment.		
BBT3604.3	BT3604.3 Apply MapReduce framework to develop and test MapReduce		6
	applications, and analyze real-world scenarios for implementing		
	MapReduce solutions effectively.		
BBT3604.4	BBT3604.4 Demonstrate understanding of HDFS design and functionality, including		5
	data replication, storage, and data ingest processes, and utilize Java		
	interfaces and command-line tools for HDFS management.		
BBT3604.5	Apply knowledge of Hadoop cluster setup and administration, including	3	6
	configuring security, monitoring, and maintenance of HDFS, and		
	analyze Hadoop benchmarks and new features in Hadoop 2.0, such as		٨
T	AYARN.		$\mathcal{N}^{\mathcal{V}}$
	but_	[]	X / /

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
BBT3605: PE3: Biosimilar Technology						
Teaching Scheme Examination Scheme						
Lec	Lectures 3 Hr / Week ESE 60 Mark		60 Marks			
Tut	orial	-	CIE	40 Marks		
Pra	ctical	ctical - Total 100 Marks				
The	eory Credits: 3		Duration of E	xam: 3 Hours		
Cou	ırse Objectives					
The	Objectives of th	is course is:				
1.	To understand	d the concept and evolution of biosimilars, including the comparison between				
1.	biosimilars and small molecule drugs.					
2.	To explore different types of biotherapeutics and their applications in various diseases, while					
^{2.} also examining the limitations and challenges in biotherapeutic development.				it.		
	To comprehen	d the key steps and regulator	ry aspects of biosimilar develop	pment, including		
3. characterization, optimization, manufacturing, clinical trials, and comparison			rison with small			
molecule drug development.						
Course Outcomes						
At the end of the unit, students will be able to:						

	Course Contents				
	Introduction to Biosimilars: Definition and overview of biosimilars, History and				
Unit I	evolution of biosimilars, The concept of biological equivalence, Comparison of				
	biologics and small molecule drugs				
	Biotherapeutics and Their Applications: Types of biotherapeutics (peptides,				
Unit II	antibodies, enzymes, etc.), Applications of biotherapeutics in various diseases,				
	Limitations and challenges in biotherapeutic development				
	Biosimilar Development Process: Overview of the biosimilar development				
Unit III	process, Key steps in biosimilar development (characterization, optimization,				
Unit III	manufacturing, and clinical trials), Comparison of biosimilar development with				
	small molecule drug development, Regulatory aspects of biosimilar development				
	Challenges and Opportunities in Biosimilar Development: Market competition				
Unit IV	and competition for biosimilars, Regulatory challenges and approval processes,				
Unit I v	Manufacturing and analytical methods for biosimilars, Patent landscape and				
	intellectual property considerations				
	Case Studies and Future Prospects: Case studies of successful and failed				
Unit V	biosimilar development programs, Emerging trends and future prospects in				
Unit v	biosimilar technology, The role of biosimilars in access to affordable healthcare				
	and sustainability of the biopharmaceutical industry				

Wardha Road, Nagpur-441 108 NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Text Books		
T.1	"Biosimilars: A New Generation of Biologics" by Sarfaraz K. Niazi	
T.2	"Biopharmaceuticals: Biochemistry and Biotechnology" by Gary Walsh	
Reference Books		
R.1	"Biosimilars and Interchangeable Biologics: Tactical Elements" by Sarfaraz K. Niazi	
R.2	"Biosimilars and Follow-On Biologics: Regulatory, Clinical, and Biopharmaceutical Development" by Sarfaraz K. Niazi	

Useful Links		
1	https://www.iqvia.com/solutions/therapeutics/biosimilars	
2	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423073/	
3	https://www.nature.com/articles/d42473-019-00145-0	

Course Out	Course Outcomes		Hours
BBT3605.1	BBT3605.1 Understand biosimilars, their evolution, and comparison with small molecule drugs.		9
BBT3605.2	BBT3605.2 Identify biotherapeutics types, their applications, and recognize development challenges.		8
BBT3605.3 Comprehend biosimilar development steps, regulatory aspects, and compare with small molecule drugs.		3	7
BBT3605.4	Analyze biosimilar development challenges, including market competition and regulatory hurdles.	3	8
BBT3605.5	Evaluate biosimilar case studies, future prospects, and their role in healthcare accessibility.	4	9

Head

Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
	BBT3606: PE3: State of Art Imaging					
Tea	Teaching Scheme Examination Scheme			neme		
Lec	tures	3 Hr / Week		ESE	60 Marks	
Tut	orial	-		CIE	40 Marks	
Pra	ctical	-		Total 100 Marks		
The	eory Credits:	3		Duration of Exam	m: 3 Hours	
Cou	ırse Objectiv	'es				
The	Objectives o	f this course is:				
1.			oscopy techniques, includir	•	on, computed	
1.			opy, and fluorescence imagin	-		
2.	2. To explore magnetic resonance techniques, such as nuclear magnetic resonance and magne			and magnetic		
		maging, in biotech		1 .	1 • 1 1	
3.	-		scopy and its applications in	n mycology, insect	biology, and	
	rhizosphere	biology.	Comme Comtante			
	Course Contents					
		Optical and Electron microscopy: Introduction to X-rays, Production of X-Rays, X-Ray diffraction and its application, Computed Tomography (CT Scan)				
		Transmission electron microscopy (TEM), scanning electron microscopy (SEM),				
		Raman scattering and Infrared (IR), Fluorescence imaging methods, Surface				
		enhanced Raman Scattering (SERS)				
		Magnetic Resonance: Nuclear Magnetic Resonance (NMR) and its applications,				
	Unit II	Magnetic Resonance imaging (MRI) and its applications in biotechnology				
1	Unit III	Stereo Microscopy: Stereo microscopy and its application in mycology, insect				
		biology and rhizo-sphere biology				
1	Init IV	Ultra sound imaging or sonography: Endoscopic ultrasound, color Doppler,				
		1	l, Ecocardiogram, Angiograp			
			and mass spectrometry ima			
		/	n Vivo BLI, Molecular BI	I, mass spectrom	etry imaging,	
		Calcium imaging				

Text Books	
T.1	"Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light" by Max Born and Emil Wolf (for Optical microscopy)
T.2	"Introduction to X-Ray Powder Diffractometry" by Ron Jenkins (for X-Ray diffraction)
Reference Boo	ks
R.1	"Fluorescence Imaging Spectroscopy and Microscopy" by Xavier Intes (for Fluorescence imaging methods)

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

R.2	"Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods" by Joseph B. Lambert (for Nuclear Magnetic Resonance)
R.3	"MRI: Basic Principles and Applications" by Mark A. Brown and Richard C. Semelka (for Magnetic Resonance Imaging)
R.4	"Principles and Applications of Stereomicroscopy" by Gillian Pocock (for Stereo microscopy)
R.5	"Diagnostic Ultrasound: Imaging and Blood Flow Measurements" by K. Kirk Shung and J. A. Thieme (for Ultrasound imaging)
R.6	"Mass Spectrometry: Principles and Applications" by Edmond de Hoffmann and Vincent Stroobant (for Mass spectrometry imaging)

Useful Links		
1	https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(02)02024-3	
2	https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-2-74	
3	https://www.biotechjournal.in/images/paper_pdffiles/Bio-60fd9da08e614.pdf	

Course Outcomes			Hours
BBT3606.1	Choose appropriate microscopy techniques, including X-ray diffraction, computed tomography, electron microscopy, and fluorescence imaging.	5	9
BBT3606.2	Infer magnetic resonance techniques, such as nuclear magnetic resonance and magnetic resonance imaging, in biotechnology.	4	8
BBT3606.3	Comprehend stereo microscopy and its applications in mycology, insect biology, and rhizosphere biology.	4	9
BBT3606.4	Recommend appropriate ultrasound imaging techniques, including endoscopic ultrasound and color Doppler, for medical diagnostics.	5	9
BBT3606.5	Examine bioluminescence imaging and mass spectrometry imaging techniques for biological research and analysis.	3	8

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics Fulsiramji Gaikwad-Patil Cellege Of Engineering and Technology, Nagpur

Page **12** of **30**

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)				
	BBT3607: PE4: Precision Medicine & Wellness				
Tea	Teaching Scheme Examination Scheme			ieme	
Lect	tures	3 Hr / Week		ESE	60 Marks
Tute	orial	-		CIE	40 Marks
Practical		-		Total	100 Marks
The	Theory Credits: 3Duration of Exam: 3 Hours			n: 3 Hours	
Cou	Course Objectives				
The Objectives of this course is:					
1. To analyze omics technologies for understanding disease mechanisms and biomarker identification.					
2.	To assess major genome projects and types of genetic variations.				
3.	To evaluate genetic screening for Mendelian diseases and pharmacogenomic testing.				

Course Contents		
Unit I	Use of genomics, transcriptomics, proteomics and metabolomics in understanding	
	disease condition. Biomarker identification and validation of a disease state.	
Unit II	Human Genome project. Cancer genome project. Different types of genetic and	
	nongenetic variations.	
	Genetic screening and diagnosis: prenatal carrier testing and newborn screening	
Unit III	for Mendelian diseases. Pharmacogenomic testing for drug selection, dosingand	
	predicting adverse effects of commonly prescribed drugs,	
Unit IV	Tumor profiling, Patient data and clinical decisions. Risk assessment through	
Unit Iv	omics approach.	
Unit V	Ethical, legal, and social implications of health privacy and policy laws for	
	precision medicine. Ayurveda system of Prakriti and Agni.	

Text Books			
T.1	"Introduction to Genomics" by Arthur M. Lesk		
T.2	"The Human Genome Project: What Does Decoding DNA Mean for Us?" by Tanya Lewis		
Reference Books			
R.1	"Transcriptomics: Methods and Protocols" edited by Michael J. Dyer		
R.2	"Principles of Proteomics" by Richard Twyman		
R.3	"Metabolomics: From Fundamentals to Clinical Applications" edited by Alessandra Sacco		
R.4	"Ethical, Legal, and Social Issues in Medicine" by Marcia Angell and Donald W. Light		

Wardha Road, Nagpur-441 108

NAAC Accredited **A**⁺ **Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

R.5	"The Ayurveda Encyclopedia: Natural Secrets to Healing, Prevention, and
K.S	Longevity" by Swami Sadashiva Tirtha

Useful Links		
1	https://www.genome.gov/human-genome-project	
2	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860823/	
3	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221079/	

Course Outcomes			Hours
BBT3607.1	Analyze omics technologies to understand disease mechanisms and identify biomarkers.	4	8
BBT3607.2	Understand major genome projects and different types of genetic variations.	2	8
BBT3607.3	Evaluate genetic screening for Mendelian diseases and pharmacogenomic testing.	5	8
BBT3607.4	Assess tumor profiling and patient data for clinical decisions using omics approaches.	5	8
BBT3607.5	Examine ethical, legal, and social implications of health privacy laws and Ayurvedic principles in precision medicine.	3	8

Polit

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)				
		BBT30	508: PE4: Nano Biotechnol	ogy	
Tea	Teaching Scheme Examination Scheme				neme
Lect	tures	3 Hr / Week		ESE	60 Marks
Tute	orial	-		CIE	40 Marks
Prac	ctical	-		Total	100 Marks
The	ory Credits: 3			Duration of Exa	m: 3 Hours
Cou	Course Objectives				
The	The Objectives of this course is:				
1.	To introduce the fundamentals of nanotechnology and nanobiotechnology, focusing on key				
	nanomaterials such as carbon nanomaterials, fullerenes, nanotubes, and nanowires.				
2.	To explore nanobiotechnological devices including nanoparticles, dendrimers, nanorobots,				
	and nanoshells, along with biosensors such as DNA, protein-based, and antibody-based				
	biosensors, emphasizing detection techniques and microfabrication methods.				
3.	To understand the synthesis and biomedical applications of biopolymers and polymer				
	nanocomposites, analyzing different types and their respective applications in various fields.				

	Course Contents		
Unit I	Introduction to nanotechnology and nanobiotechnology. Nanomaterial: Carbon		
Unit I	nanomaterial, Fullerenes, Nanotube, Nanowire.		
	Nanobiotechnological devices: Nanoparticles, Dendrimers, Nanorobots, Nubot,		
Unit II	Nanoshell. Biosensors: DNA, Protein-based, Antibodies and its application.		
Unit II	Detection in Biosensors: fluorescence, absorption, electrochemical methods.		
	Techniques used for microfabrication. Future direction in biosensor research.		
Unit III	Biopolymer: synthesis of polymer nanofibers and their biomedical applications.		
	Polymer nanocomposite: Types and application.		
Unit IV	Nanomedicine as a drug delivery system. Implications of nanotechnology in the		
Umtiv	society. Positive and negative aspects of nanotechnology.		
	Application of Nanotechnology: Nanotechnology for waste reduction and		
Unit V	Improved energy efficiency, nanotechnology-based water treatment strategies and		
	Environmental remediation. Case studies and Regulatory needs.		

Text Books	
T.1	"Nanobiotechnology: Concepts, Applications and Perspectives" by Christof M. Niemeyer and Chad A. Mirkin
T.2	"Nanobiotechnology: Bioinspired Devices and Materials of the Future" by Oded Shoseyov and Ilan Levy
Reference Books	

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Γ	R.1	"Biosensors: An Introduction" by Ajit Sadana and Neeti Sadana
	R.2	"Biopolymers: New Materials for Sustainable Films and Coatings" edited by David Plackett
	R.3	"Polymer Nanocomposites: Processing, Characterization, and Applications" edited by Joseph H. Koo and Jin Kuk Kim
	R .4	"Nanomedicine: Principles and Perspectives" by Raj Bawa, Gerald F. Audette, and Israel Rubinstein

Useful Links		
1	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862100/	
2	https://www.sciencedirect.com/topics/chemistry/biopolymer	
3	https://www.sciencedirect.com/topics/medicine-and-dentistry/nanomedicine	

Course Outcomes		CL	Hours
BBT3608.1	Understand nanotechnology basics and key nanomaterials.	2	6
BBT3608.2	Explore nanobiotechnological devices and biosensors, emphasizing detection techniques.	2	5
BBT3608.3	Comprehend biopolymer synthesis and applications in various fields.	3	6
BBT3608.4	Evaluate nanomedicine's role in drug delivery and societal implications of nanotechnology.	5	6
BBT3608.5	Examine nanotechnology applications in waste reduction, energy efficiency, water treatment, and environmental remediation, including regulatory needs.	5	6

Head

Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics Tulsiramji Gaikwad-Patil Cellege Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108 NAAC Accredited A+ Grade

Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

	Third Year B.Tech (Sixth Semester)				
	BBT3609: PE4: Tissue Engineering				
Tea	Teaching Scheme Examination Scheme			Scheme	
Lect	tures	3 Hr / Week	ESE	60 Marks	
Tut	orial	-	CIE	40 Marks	
Pra	ctical	-	Total	100 Marks	
The	ory Credits: 3		Duration of E	Exam: 3 Hours	
Cou	rse Objectives				
The	Objectives of the	his course is:			
1.	To analyze the fundamentals of tissue engineering, including stem cell tissue engineering,				
	growth factor	s, extracellular matrix, me	chanical forces on cells, cel	1 adhesion, and	
	migration.				
2.	To explore tissue engineering enabling technologies such as polymer scaffolds, biomimetic				
	materials, nanocomposite scaffolds, bioreactors, and regulatory issues.				
3.	3. To examine tissue engineering applications in various fields including skin, nerve,				
	musculoskeletal, bone, cartilage, temporomandibular, smooth muscle, esophagus, vascular				
	grafts, cardiac, heart valves, urologic organs, hepatic, renal, dental, and tracheal tissue				
	engineering.				

	Course Contents		
	Unit-1 Fundamental Of Tissue Engineering Fundamentals Of Stem Cell Tissue		
Unit I	Engineering; Growth Factors; Extracellular Matrix: Structure, Function And		
	Tissue Engineering Application; Mechanical Forces On Cells; Cell Adhesion; Cell		
	Migration.		
	Unit-2 Tissue Engineering Enabling Technologies Polymer Scaffold For Tissue		
Unit II	Engineering Applications; Biomimetic Materials; Nanocomposite Scaffolds		
	Tissue Engineering; Bioreactors; Regulatory Issues In Tissue Engineering.		
	Unit-3 Tissue Engineering Application I Bioengineering Of Human Skin		
Unit III	Substitute; Nerve Tissue Engineering; Musculoskeletal Tissue Engineering; Bone		
	Tissue Engineering; Cartilage Tissue Engineering; Temporomandibular Tissue		
	Engineering; Smooth Muscle Tissue Engineering; Esophagus Tissue Engineering.		
	Unit-4 Tissue Engineering Application II Vascular Graft Tissue Engineering		
Unit IV	Cardiac Tissue Engineering; Heart Valve Tissue Engineering; Urologic Organ		
Unit IV	Tissue Engineering; Hepatic Tissue Engineering; Renal Tissue Engineering;		
	Dental Tissue Engineering; Tracheal Tissue Engineering.		
Unit V	Unit-5: Emerging Trends in Tissue Engineering: novel biomaterials, 3D		
	bioprinting, organ-on-a-chip technologies, and the application of tissue		

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

engineering in regenerative medicine, ethical considerations associated with the translation of tissue engineering technologies from the lab to clinical practice.

Text Books		
T.1	"Principles of Tissue Engineering" by Robert Lanza, Robert Langer, and Joseph P. Vacanti	
T.2	"Tissue Engineering: Principles and Practices" by John P. Fisher, Antonios G. Mikos, and Joseph D. Bronzino	
Reference Boo	Reference Books	
R.1	"Tissue Engineering: From Lab to Clinic" by Miguel Alaminos, Antonio Campos, and Miguel Ángel Martín-Piedra	
R.2	"Biomaterials Science: An Introduction to Materials in Medicine" by Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, and Jack E. Lemons	
R.3	"Nanotechnology in Tissue Engineering and Regenerative Medicine" edited by Ketul C. Popat	
R.4	"Regenerative Medicine: From Protocol to Patient" edited by Gustav Steinhoff	

Useful Links			
1	1 <u>https://www.sciencedirect.com/topics/engineering/tissue-engineering</u>		
2	2 <u>https://www.aabb.org/news-resources/resources/cellular-therapies/facts-about-</u>		
	cellular-therapies/regenerative-medicine		
3	https://wyss.harvard.edu/technology/3d-bioprinting/		

Course Outcomes			Hours
BBT3609.1	Understand the fundamentals of tissue engineering, including stem cell tissue engineering, growth factors, extracellular matrix, mechanical forces on cells, cell adhesion, and migration.	2	9
BBT3609.2	Explore tissue engineering enabling technologies such as polymer scaffolds, biomimetic materials, nanocomposite scaffolds, bioreactors, and regulatory issues.	2	9
BBT3609.3	Examine tissue engineering applications in various fields including skin, nerve, musculoskeletal, bone, cartilage, temporomandibular, smooth muscle, esophagus, vascular grafts, cardiac, heart valves, urologic organs, hepatic, renal, dental, and tracheal tissue engineering.	5	9

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

BBT3609.4	Evaluate advanced tissue engineering applications in areas such as vascular grafts, cardiac, heart valves, urologic organs, hepatic, renal, dental, and tracheal tissue engineering.	5	9
BBT3609.5	Analyze emerging trends in tissue engineering including novel biomaterials, 3D bioprinting, organ-on-a-chip technologies, and ethical considerations in regenerative medicine.		9

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Tulsiramji Gaikwad-Patil

College Of Engineering and Technology, Nageur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)				
	BBT3610: Mass Transfer in Biotechnology Lab				
Tea	Teaching Scheme Examination Scheme				
Lect	tures	2 Hr / Week	ESE	25 Marks	
Tut	orial	-	CIE	25 Marks	
Pra	ctical	-	Total	50 Marks	
Practical Credit: 1 Duration of Exam: 2 Hours					
Cou	rse Objectives				
The	Objectives of t	his course is:			
1.	Determine the	e diffusion coefficient of ace	tone in air through experimenta	al measurements	
	and analysis.				
2.	2. Investigate the drying characteristics of a given material under constant drying conditions				
to determine equilibrium and critical moisture content.					
3.	3. Determine the mass transfer coefficient for the absorption of water vapor on silica gel using				
	experimental techniques.				

Sr. No.	Experiments
1	Determination of diffusion coefficient of an organic vapor (acetone) in air.
2	Examination of the drying characteristics of a given material under constant drying
2	conditions and to report equilibrium and critical moisture content.
3	Determination of the mass transfer coefficient for the absorption of water vapor on silica
5	gel.
4	Analysis of the variation of mass transfer coefficient as a function of flow rate of air for
+	the vaporization of naphthalene in a packed bed.
5	Estimation of the rate constant for the physical dissolution of benzoic acid in a liquid.
6	Determination of the diffusion coefficient for the given liquid-liquid system as a function
0	of concentration.
7	Estimation of KLa for air/oxygen absorption in nature.
8	Examination of crystallization phenomena in Batch Crystallization
9	To find the mass transfer coefficient in a wetted wall Column
10	To verify Rayleigh's Equation for Simple Distillation

Text Books				
T.1	"Unit Operations of Chemical Engineering" by K. A. Gavhane			
T.2	"Mass Transfer: Principles and Applications" by H. Panda			
Reference Boo	Reference Books			
R.1	"Separation Process Principles" by J. D. Seader, Ernest J. Henley, and D. Keith Roper			
R.2	"Introduction to Chemical Engineering" by S. K. Ghosal and A. K. Biswas			

Wardha Road, Nagpur-441 108

NAAC Accredited **A⁺ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Useful Links					
1	1 https://www.sciencedirect.com/topics/engineering/tissue-engineering				
2 <u>https://www.aabb.org/news-resources/resources/cellular-therapies/facts-abc</u> cellular-therapies/regenerative-medicine					
3	https://wyss.harvard.edu/technology/3d-bioprinting/				

Course Outcomes		CL	Hours
BBT3610.1	Understand principles & applications of molecular diffusion,	2	9
DD 13010.1	including its relevance in oxygen transfer methodology.		
	Analyze vapor-liquid equilibrium data, estimate VLE, and	4	8
BBT3610.2	perform differential distillation, equilibrium distillation, and		
	rectification processes effectively.		
	Comprehend gas absorption processes, design plate columns,	4	8
BBT3610.3	and analyze mass transfer in packed and fluidized beds for		
	industrial applications.		
	Apply liquid-liquid extraction principles, understand	3	9
BBT3610.4	supercritical fluid extraction, and determine stages for		
	contacting processes.		
	Understand drying characteristics, evaluate rates, select	2	8
BBT3610.5	dehydration equipment, and grasp crystallization theory and		
	applications.		

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108 NAAC Accredited **A+ Grade**

Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
	BBT3611: Animal and Plant Biotechnology Lab					
Teac	Teaching Scheme Examination Scheme					
Lectu	ures	2 Hr / Week		ESE	25 Marks	
Tuto	rial	-		CIE	25 Marks	
Prac	tical	-		Total	50 Marks	
Prac	Duration of Exam: 2 Hour		xam: 2 Hours			
Cour	rse Objectives			I		
The C	Objectives of this	course is:				
1.	1. To gain a thorough Knowledge about basic of Animal and plant Biotechnology.					
2.	To study different techniques related to animal and plant biotechnology.					
3. To apply principles biotechnology for culturing, propagation and maintenance of animal and plant cells.						

Sr. No.	Experiments
1	To Assess Cell Disruption Techniques for Enhanced Biomolecule Release
2	To Investigate Microfiltration and Centrifugation for Insoluble Solute Withdrawal
3	To Demonstrate Liquid-Liquid Extraction of Low Molecular Weight Bioproducts
4	To Explore Membrane Separation Techniques: Microfiltration to Reverse Osmosis
5	To Perform Chromatographic Separation: Ion Exchange, Affinity, Size Exclusion
6	To Evaluate the Efficiency of Various Membrane Separation Processes
7	To Optimize Liquid-Liquid Extraction Parameters for Biomolecule Extraction
8	To Analyze the Impact of Excipients on Lyophilization and Product Formulation
9	To Investigate the Role of Pervaporation in Concentration-Driven Processes
10	To Characterize Freeze-Dried Products Through Lyophilization Techniques

Text Books	Text Books			
T.1	"Plant Tissue Culture: Techniques and Experiments" by Roberta H. Smith			
T.2	"Animal Cell Culture: Essential Methods" by John M. Davis			
Reference	Reference Books			
R.1	R.1 "Plant Propagation: Principles and Practices" by Hudson T. Hartmann and Dale E. Kester			
R.2	"Transgenic Animal Technology: A Laboratory Handbook" by Carl A. Pinkert			

Wardha Road, Nagpur-441 108

NAAC Accredited **A**⁺ **Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

	Useful Links				
1	1 <u>https://www.researchgate.net/publication/371875460_Industrial_Biotechnology_Downstream_p</u> rocessing				
2	https://agsci.psu.edu/digital-education/academic/syllabi/abe-888				
3	https://handbook.unimelb.edu.au/2024/subjects/chen90035				

Course Outcomes			Hours
BBT3611.1	Understand the basic principles of animal and plant Biotechnology.	6	7
BBT3611.2	Describe basic techniques for preparation of different media for plant and animal cell culture.	4	8
BBT3611.3	Develop different techniques for propagation and maintenance of animal and plant cells.	5	9
BBT3611.4	Develop different techniques for production of transgenic plants and animals.	5	8
BBT3611.5	Select proper culture techniques for propagation of transgenic plants and animals.	4	7

Head

Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
		BBT3612	ioseparation Engineering			
Tea	Teaching Scheme Examination Scheme					
Lec	Lectures2 Hr / WeekESE25 Marks			arks		
Tut	orial	-	CIE	25 M	arks	
Pra	ctical	-	Tot	al 50 M	arks	
Pra	ctical Credit: 1		Dur	ation of Exam: 2 H	ours	
Cou	rse Objectives					
The	Objectives of th	nis course is:				
1.	Demonstrate p	roper sterilization t	iniques for glassware and equ	ipment used in plant	tissue	
1.	culture, ensuri	ng contamination-f	experimental conditions.			
2.	Prepare stand	ard tissue culture	dia and sterilize it effective	vely to provide a su	uitable	
2.	environment for tissue culture experiments.					
3.	Perform sterilization of various explants and demonstrate proper inoculation techniques onto			es onto		
5.	culture media to initiate plant tissue growth.					

Sr. No.	Experiments	
1	To Assess Cell Disruption Techniques for Enhanced Biomolecule Release	
2	To Investigate Microfiltration and Centrifugation for Insoluble Solute Withdrawal	
3	To Demonstrate Liquid-Liquid Extraction of Low Molecular Weight Bioproducts	
4	To Explore Membrane Separation Techniques: Microfiltration to Reverse Osmosis	
5	To Perform Chromatographic Separation: Ion Exchange, Affinity, Size Exclusion	
6	To Evaluate the Efficiency of Various Membrane Separation Processes	
7	To Optimize Liquid-Liquid Extraction Parameters for Biomolecule Extraction	
8	To Analyze the Impact of Excipients on Lyophilization and Product Formulation	
9	To Investigate the Role of Pervaporation in Concentration-Driven Processes	
10	To Characterize Freeze-Dried Products Through Lyophilization Techniques	

Text Books	Text Books				
T.1	T.1 "Bioseparations Science" by Paul A. Belter and Wei-Shou Hu				
T.2 "Downstream Processing of Proteins: Methods and Protocols" edited by Moham Desai and Nicolai L. Noppe					
Reference	Books				
R.1 "Principles of Downstream Techniques in Biological and Chemical Processes" by N Doble and Anil Kumar Kruthiventi					
R.2	"Separation Processes in Biotechnology" by J. Sivasankar				

Wardha Road, Nagpur-441 108

NAAC Accredited **A**⁺ **Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Useful Links				
1	1 <u>https://www.researchgate.net/publication/371875460_Industrial_Biotechnology_Downstream_processing</u>				
2	https://www.sciencedirect.com/topics/immunology-and-microbiology/downstream-processing				
3	https://www.wiley.com/en- us/Downstream+Industrial+Biotechnology:+Recovery+and+Purification-p-9781118131244				

Course Outo	Course Outcomes		
BBT3612.1	Analyze fermentation broths to identify downstream processing stages effectively.	3	9
BBT3612.2	Select appropriate cell disruption methods and evaluate their efficacy for removing insoluble solutes from fermentation broths.	5	7
BBT3612.3	Apply extraction and precipitation techniques to concentrate bioproducts efficiently.	5	8
BBT3612.4	Design purification protocols integrating membrane separation and chromatography techniques for bioproduct purification.	4	7
BBT3612.5	Formulate bioproducts using lyophilization and spray drying techniques, considering the role of excipients in dosage form formulations.	3	8

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
	BBTXX15: OE: Biomaterials					
Tea	Teaching Scheme Examination Scheme					
Lect	Lectures3 Hr / WeekESE60 Marks			60 Marks		
Tute	orial	-		CIE	40 Marks	
Prac	ctical	_		Total	100 Marks	
The	ory Credits: 3			Duration of Exa	m: 3 Hours	
Cou	rse Objectives					
The	Objectives of the	nis course is:				
1.	To understand	the classification	on and properties of biomate	rials, including the	eir interaction	
	with physiological fluids and biological responses.					
2.	To explore the characteristics, corrosion behavior, and host tissue reactions of metallic					
	implant materials, along with their applications in hard and soft tissue replacements.					
3.	To investigate the fabrication techniques, mechanical improvements, and biocompatibility					
	considerations of ceramic, glass, and composite implant materials, emphasizing their					
	suitability for biomedical applications.					

	Course Contents				
Unit I	Introduction: Definition of biomaterials, requirements & classification of biomaterials, Comparison of properties of some common biomaterials. Effects of physiological fluid on the properties of biomaterials. Biological responses (extra and intra-vascular system). Surface properties of materials, physical properties of materials, mechanical properties.				
Unit II	Metallic implant materials: Stainless steel, Co-based alloys, Ti and Ti-based alloys. Importance of stress-corrosion cracking. Host tissue reaction with bio metal, corrosion behavior and the importance of passive films for tissue adhesion. Hard tissue replacement implant, Soft tissue replacement implants.				
Unit III	Ceramics and glasses-bio ceramics: Type of Ceramics and their classification, Calcinations, Annealing. Sintering, nearly inert ceramics, bio-reactive glasses and glass ceramics, Calcium phosphate ceramics. Composite implant materials: Mechanics of improvement of properties by incorporating different elements. Composite theory of fiber reinforcement (short and long fibres, fibres pull out)				
Unit IVSurface properties and modification of surface properties: Basic print engineering manufacturing, methods and applications of common manuf processes, milling, grinding, finishing, rolling, forging, Concept of bio synthesis					
Unit V	Biocompatibility & Toxicological screening of biomaterials : Definition of biocompatibility, blood compatibility and tissue compatibility. Toxicity tests: acute				

Wardha Road, Nagpur-441 108

NAAC Accredited **A**⁺ **Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

and chronic toxicity studies (in situ implantation, tissue culture, haemolysis, thrombogenic potential test, systemic toxicity, intracutaneous irritation test).

Text Books			
T.1	Computational methods in drug design Fred E. Cohen, Walter Hamilton Moos.		
1.1	Publisher: ESCOM Science, 1993		
T.2 Molecular Modelling for Beginners - Alan Hinchliffe Publisher: John Wiley & Sc Inc, 2008. ISBN: 978-0470513149			
Reference Books			
R.1	R.1 Materials Science and Engineering- Callister.		
R.2	Materials for Medical Engineering- Euromat 99 vol-2		

Useful Links		
1	1 <u>https://nptel.ac.in/courses/113104009</u>	
2	https://nptel.ac.in/courses/102106057	
3	https://nptel.ac.in/courses/113108071	

Course Out	Course Outcomes		
BBTXX15.1	BBTXX15.1Demonstrate the fundamental concepts of properties, requirements & classification of biomaterials.		6
BBTXX15.2	BBTXX15.2 Acquire the knowledge about various types of Metallic implant materials.		5
BBTXX15.3	Summarize the types and classification on Ceramics and glasses-bio ceramics.	3	6
BBTXX15.4	Demonstrate the Surface properties and modification of surface properties.	5	6
BBTXX15.5	Comprehend the principles of biocompatibility, interactions between biomaterials and biological systems	5	6

Head Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur Dean Academics

Tulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

	Third Year B.Tech (Sixth Semester)					
	BBTXX16: OE: Food and Nutrition Technology					
Tea	Teaching Scheme Examination Scheme					
Lect	Lectures3 Hr / WeekESE60 Marks			60 Marks		
Tute	orial	-		CIE	40 Marks	
Prac	ctical	-		Total	100 Marks	
The	ory Credits: 3			Duration of Exa	m: 3 Hours	
Cou	rse Objectives					
The	Objectives of the	nis course is:				
1.	1. To understand the microorganisms associated with food, their growth factors, and spoilage					
	mechanisms.					
2.	2. To learn principles and techniques of food preservation emphasizing inactivation, inhibition,					
	and recontamination prevention.					
3.	To explore the production processes of commercially important organic acids and					
	understand their significance in food technology.					

Course Contents			
	Food Microbiology: Micro-organisms associated with food, factors affecting		
Unit I	growth of micro-organisms in food, food spoilage. Enzymatic and nonenzymatic		
	changes in food spoilage.		
	Food Preservation Techniques: Principles of different modes of food preservation;		
Unit II	Preservation methods with emphasis on inactivation, inhibition, and avoiding		
	recontamination.		
	Production of Primary and Secondary Metabolites: The process of production of		
Unit III	some commercially important organic acids: citric acid, lactic acid, acidic acid,		
	gluconic acid, amino acids and alcohol.		
	Food composition and nutrients present in foods: Nutrition terminologies, Food		
Unit IV	pyramid, energy value of food, factors affecting and calorie needs for Basal		
Unitiv	Metabolic Energy, physical activity and diet induced thermogenesis; energy		
	imbalance and body weight regulation.		
	Human Nutrition: Role of carbohydrate, lipids and protein in human nutrition.		
Unit V	Digestion and absorption of nutrients in human body, Fortification: chemical &		
	biofortification.		

Text Books	
T.1	Fundamental Food Microbiology (3rd Edition) – by Bibek Ray. CRC Press: ISBN - 0- 8493-1610-3

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra (An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

T.2	Toledo, R.T. Fundamentals of Food Process Engineering, Chapman and Hall; 2000				
Reference Boo	Reference Books				
R.1	Shakuntala, N., & Many, O. Food: Facts and Principles, New Age International; 2001.				
R.2	Food, Nutrition and Diet Therapy by Krause and Mahan 1996, Publisher- W.B.Saund				

Useful Links				
1	https://nptel.ac.in/courses/103107088			
2	https://nptel.ac.in/courses/126105013			
3	https://nptel.ac.in/courses/126105027			

Course Outcomes			Hours	
BBTXX16.1	Discuss the fundamentals of microbes associated with food and factors responsible for food spoilage.	2	7	
BBTXX16.2	BBTXX16.2 Analyse the different methods in food preservation technology			
BBTXX16.3	Explain process of production of industrially important microbial metabolites.	2	7	
BBTXX16.4 Analyse the effects of food in various factors like BMR and physical activity.		3	7	
BBTXX16.5	Summarize the role of different food components in the human nutrition	5	8	

Head

Department Of Biotechnology Tulsiramji Gaikwad Patil Collage Of Engineering & Technology, Nagpur

Dean Academics Fulsiramji Gaikwad-Patil College Of Engineering and Technology, Nagpur

Wardha Road, Nagpur-441 108

NAAC Accredited **A+ Grade** Approved by AICTE, New Delhi, Govt. of Maharashtra

(An Autonomous Institution Affiliated to RTM Nagpur University)

Department of Biotechnology

Third Year B.Tech (Sixth Semester)								
		BA	U3606: Social Awa	areness				
Teaching Scheme				Examination	Scheme			
Lectures		tures 2 Hr / Week		ESE	-			
Tutorial		-		CIE	-			
Pra	ctical	-		Total	-			
Theory Credits: Audit			Duration of	Exam: -				
Cou	ırse Activity	:						
1.	Social awareness (Artisans-relates to engg., visit to hospitals, orphanages, police station,							
1.	courts, trauma centers, consumer forums)							
2.	Social Service (teach in neighborhood, adopt an underprivileged school, village stay / visit							
	(NSS), cleanliness drive, and skill transfer)							

Course Contents

Human beings live in relationship with their family members and with others in the society. As a society, mankind strives to achieve ordered and organized life through which an environment of cooperation and coexistence is expected. A healthy society creating an environment of fearlessness is a key for the mankind to achieve higher goals because it is society which makes us most human, most complete as people.

Although as a society, our expectation is fearlessness, but due to lack of understanding of our role in a society, we fail to fulfill the expectation. The social awareness activity shall promote an understanding and sharing of issues of societal problem through exposure to variety of artisans and different kind of organizations. It is expected that this exposure will enable the learners to appreciate social issues, problems and challenges.

Each institution will offer a range of introductory activity based courses focusing on local artisans related to engineering so that students are sensitized to appreciate their problems and can take up some of the problems to solve while they do their regular studies. This course shall also include visits to visit to hospitals, orphanages, police station, courts, trauma centers, consumer forums so that they get exposed to different facets of societal problems. Care should be taken to give adequate representation to local and regional organizations and artisans. For example, Banaras has local traditions in Banarasi Saari, Toy making, etc and has almost all types of organizations. An institution in Banaras area can offer courses on these artisans. This will, in turn, also ensure wider community involvement/interaction with the institution. At the end of the course/semester, a student should be able to identify a social issue, prepare project report and give presentation on the selected issues. Contact hours per week should be 3-4 hours. Towards the end of the course, the institution can organize an exhibition in which all the students publicly demonstrate findings of their reports and their future plan of actions.

BOS Chairman Department Of Biotechnology Tulsiramji Gaikwad-Patil Tulsiramji Gaikwad Patil Collage Engineering & Technology, Nagpur Technology, Nagpur Technology, Nagpur Technology, Nagpur