

Mohgaon, Wardha Road, Nagpur - 441 108

An Autonomous Institute

DEPARTMENT OF ELECTRICAL ENGINEERING

M.Tech. Integrated Power System

Course Outcomes

Considering

National Education Policy 2020

From

Academic Year 2024-25

Program: M.Tech. Integrated Power System (IPS)

Course Wise Course Outcomes

Semester-II	MIP21201: Advanced Power System Protection	
Course Code	Course Outcomes	CL
MIP21201.1	Predict basic philosophy of power system protection.	3
MIP21201.2	Evaluate various parameters of short & long transmission line	3
MIP21201.3	Apply protective relaying for transformers, machines, bus bars and transmission lines.	4
MIP21201.4	Demonstrate the principle, construction and application of numerical relays	4
MIP21201.5	Articulate the algorithms used for fault analysis.	3

Semester-II	MIP21202: HVDC and Facts	
Course Code	Course Outcomes	CL
MIP21202.1	Describe types of topology and multi terminal HVDC System	3
MIP21202.2	Describe converter operation in various modes.	3
MIP21202.3	Analyse the fault in HVDC system and provide proper protection.	4
MIP21202.4	Apply shunt, series and their combination for compensation.	3
MIP21202.5	Identify, formulate and solve network problems with FACTS controller	3

Semester-II	MIP21204: FACTS & Custom Power Devices	
Course Code	Course Outcomes	CL
MIP21204.1	Analyze the performance of Transmission line with and without FACTS Devices	4
MIP21204.2	Relate Static VAR Compensator (SVC) and Static Synchronous Compensator (STATCOM)	3
MIP21204.3	Correlate the operation and control of various Static Series Compensators	4
MIP21204.4	Articulate Sub Synchronous Resonance and how it is mitigated and the operation and control of UPFC	3
MIP21204.5	Illustrate various power quality issues and how are they mitigated by various FACTS Devices	4

Semester-II	MIP21205: Artificial Intelligence in Power System	
Course Code	Course Outcomes	CL
MIP21205.1	Illustrate the fundamentals of Artificial Intelligence and its characteristics	3
MIP21205.2	Classification of different aspect of Ontology and Predicate Logic	4
MIP21205.3	Determine the parameters of Fuzzy logic and its control.	5
MIP21205.4	Analyze the types of expert systems	4
MIP21205.5	Design and develop application of AI in Power Systems	6

Semester-II	MIP21206: Power System Transients	
Course Code	Course Outcomes	CL
MIP21206.1	Explain the causes and effects of transients on power systems and electrical circuits.	4
MIP21206.2	Analyze the causes, effects, and waveforms of switching transients in electrical circuits, and evaluate the impact of resistance and load switching on system stability and protection.	4
MIP21206.3	Explain the formation and discharge mechanisms of lightning, and evaluate effective protection strategies to mitigate lightning transients in power systems.	4
MIP21206.4	Analyze the transient response on transmission lines, applying traveling wave theory, reflection, refraction, and standing wave concepts to evaluate system behavior	4
MIP21206.5	Analyze the transient behavior in integrated power systems due to faults, switching operations, and load changes, and apply EMTP for effective transient management and system design.	4

Semester-II	MIP21207: Power System Dynamics & Stability (PE-IV)	
Course Code	Course Outcomes	CL
MIP21207.1	Describe the operation of power flow studies in power system.	4
MIP21207.2	Examine topical issues of stability study due to various faulty conditions	4
MIP21207.3	Analyze types of methods to improve stability in integrated power Systems.	4
MIP21207.4	Examine topical issues of transient stability	4
MIP21207.5	Enable Augmentation of stability of turbine governor control.	4

Semester-II	MIP21208: Program Elective -IV: Utilization of Electrical Energy	
Course Code	Course Outcomes	CL
MIP21208.1	Judge the suitability of different motor drives to be used for a specific purpose.	4
MIP21208.2	Develop , select, and apply appropriate techniques for designing indoor & outdoor lighting schemes.	5
MIP21208.3	Design and develop smart electrical heating systems through the use of modern Electrical Engineering and IT tools.	6
MIP21208.4	Design and develop smart electrical welding systems through the use of modern Electrical Engineering and IT tools.	6
MIP21208.5	Create, select, and apply appropriate techniques, tools and resources in designing/developing electrolytic and electrometallurgical processes	5

Semester II:	MIP21209: Neural Network and Fuzzy Application in Power S (Program Elective-IV)	System
Course Code	Course Outcomes	CL
MIP21209.1	Explain the role and components of AI, ANNs, and FLS in modern power systems.	2
MIP21209.2	Implement ANN-based models for load forecasting, fault detection, and system optimization.	3
MIP21209.3	Analyze the effectiveness of fuzzy logic controllers in voltage stability and energy management	4
MIP21209.4	Design hybrid Neuro-Fuzzy solutions for smart grid stability and protection challenges.	6
MIP21209.5	Evaluate AI-driven innovations for renewable integration and blackout prevention in power systems	5

Semester II:	MIP21203: Electrical Power System Lab - II	
Course Code	Course Outcomes	CL
MIP21203.1	Evaluate the Parameters of Transmission Lines and Bus Admittance and Impedance Matrices using ETAP	3
MIP21203.2	Solve power flow using Newton-Raphson & Gauss-Seidal Iterative Method	3
MIP21203.3	Evaluate Single Machine & Multi Machine Infinite Bus System using MATLAB	5
MIP21203.4	Design Load – Frequency Dynamics of Single Area Power Systems	3
MIP21203.5	Implement Two Port Network using various parameters	5

Electrical Engineering
Tulsiramji Gaikwad-Patil College of
Engineering and Technology, Nagpur